
https://doi.org/10.31871/WJIR.12.2.4                                                      World Journal of Innovative Research   (WJIR) 

                                                                     ISSN: 2454-8236, Volume-12, Issue-2, February 2022 Pages 01-09 

 

                                                                                    1                                                                             www.wjir.org 

 

 

Abstract— In model building, forecasting is the ultimate goal 

since it assists in policy implementation and further research 

work. This paper aimed at establishing a robust quantile 

regression analysis.  Appropriate model and parameters of the 

model with their statistical test for effective prediction was 

established. It has been established that quantile regression 

relative to ordinary least squares produce regression estimates 

that are more robust against outliers.From 5th to 99th 

percentile, results showed that, at 25th percentile the number of 

tillers and plant height are more significant with p-value of 

0.044 and 0.001 at 0.05 level of significance compare to others. 

The generalized linear models considered showed insignificance 

with p-value 1.000 and 0.760 at 0.05 level of 

significance.However, quantile regression tells us what 

happened as we move from the smallest to the highest quantile 

in estimating the goodness of fit test for the model for proper 

forecasting also, the model has been establishedat 25th 

percentiles.(Yield = -2419.596 + 1.352(Tillers) + 45.322(Height)) 

with the best yield which is significant and the best amongst 

others. 

Index Terms— Quantile, Model, Percentile, Tillers and 

Height. 

 

I. INTRODUCTION 

Quantile Regression (QR) modelshave provided a valuable 

tool in economics, finance, and statistics as a way of 

capturingheterogeneous effects of covariates on the outcome 

of interest, exposing a wide variety offorms of conditional 

heterogeneity under weak distributional assumptions. 

Importantly, Quantile Regression also provides a framework 

for robust inference. Applying quantile regression to count 

data presents logical and practical complicationswhich are 

usually solved by artificially smoothing the discrete 

responsevariable through jittering.Other recent approaches 

include that of Congdon (2017), in which the asymmetric 

Laplace distribution is combined with a Poisson model in a 

Bayesian framework, and the model-based quantile 

regression of Padellini and Rue (2018), in which quantiles are 

mapped to the parameters of a generalized linear model 

identified by a continuous version of a valid count 

distribution. Tzavidis et al. (2015) proposed a semiparametric 

M-quantile approach for counts that extends theideas of 

Cantoni and Ronchetti (2001) and Breckling and Chambers 
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(2001). These methods avoid jittering, but depend on a 

limited choice of predefined parametric models. [1] 

Frumento and Bottai (2016, 2017) suggested using a fully 

parametric approach and reformulated model. Quantile 

regression is a type of regression analysis used in statistics 

and econometrics. Whereas the Method of Least Squares 

(MLS) results in estimates of the conditional mean of the 

response variable given certain values of the predictor 

variables , quantile regression aims at estimating 

either the conditional median or other quantiles of the 

response variable. Essentially, quantile regression is the 

extension of Linear Regression and we use it when the 

conditions of linear regressions are not applicable. 

Quantile regression methods provide an alternative approach 

for robust inference. Rather than re- lying exclusively on a 

single measure of conditional central tendency, the quantile 

regression approach allows the investigator to explore a range 

of conditional quantile functions thereby exposing a variety 

of forms of conditional heterogeneity. [3]. 

Constant coefficient linear time series models have played an 

enormously successful role in statistics, and gradually various 

forms of random coefficient time series models, have also 

emerged as viable competitors in particular fields of 

application. One variant of the latter class of models, 

although perhaps not immediately recognizable as such, is the 

linear quantile regression model. This model has received 

considerable attention in the theoretical literature, and can be 

easily estimated with the quantile regression methods 

proposed in Koenker and Bassett (1978). Curiously, however, 

all of the theoretical work dealing with this model (that we are 

aware of) focuses exclusively on the i.i.d. innovation case that 

restricts the autoregressive coefficients to be independent of 

the specified quantiles. In this project work we seek to relax 

this restriction and consider linear quantile autoregression 

models who’s autoregressive (slope) parameters may vary 

with quantiles τ ∈ [0, 1]. We hope that these models might 

expand the modeling options for time series that display 

asymmetric dynamics or local persistency. 

Considerable recent research effort has been devoted to 

modifications of traditional constant coefficient dynamic 

models to incorporate a variety of heterogeneous innovation 

effects. An important motivation for such modifications is the 

introduction of asymmetries into model dynamics. It is 

widely acknowledged that many important economic 
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variables may display asymmetric adjustment paths Enders 

and Granger (1998)).  

We believe that quantile regression methods can provide an 

alternative way to study asymmetric dynamics and local 

persistency in time series. We propose a quantile 

autoregression (QAR) model in which autoregressive 

coefficients may take distinct values over different quantiles 

of the innovation process. We show that some forms of the 

model can exhibit unit-root-like tendencies or even 

temporarily explosive behavior, but occasional episodes of 

mean reversion are sufficient to ensure stationarity. The 

models lead to interesting new hypotheses and inference 

apparatus for time series, and data saddled with outliers [4]. 

II. MATERIALS AND METHODS 

Quantile Regression Model 

For better understanding, we start quantile regression from the basic idea of linear regression. 

Apart from the mean, the lower and upper quantile are also important. A regression model does not capture the pattern of the 

situation. To better understand the quantile regression, we take a leave from linear regression. The quantile regression model 

estimates the potential differential effect of a covariate on various quantiles in the conditional distribution. For the linear 

regression model, we have 

Yi= β0 + β1x1 + Ɛi                    … (1) 

From (3.1) above, Ɛiis identically, independently and normally distribute with mean zero and unknown variance σ2. Owing to 

the fact that the error is normally distributed with mean zero, the function β0 +β1x is fitted to the data Corresponding to 

conditional mean of y given by E[y|x] and is always interpreted as mean in the population of y values corresponding to the fixed 

value of x. Given p to denote proportion, that is (0< p <1). Then the corresponding quantile regression for the equation (1) 

above is  

Yi = β0
(p) + β1

(p)xi + Ɛi
(p)                                                                                                     … (2) 

This indicates that the proportion of the population having scores below the quantile at p. The pth conditional quantile Ɛi is 

defined as 

Q(p) (yi|xi) = β0
(p) + β1

(p)xi                                                                                                                          … (3) 

Equation (3) above represent the conditional pth quantile which can be determine by the quantile specific parameters β0
(p) and 

β1
(p) which are specific value of the covariate xi. 

Again, Let Y be a random variable with a distribution function FY and π be a real number between 0 and 1. The πth quantile of 

FY denoted as qy(π) is the solution to FY(q) = π which is given as  

qy(π) = FY
−1(π) = inf{y: FY(y) ≥ π} 

where o <π < 1 is the quantile level. 

The πth quantile of FY can be obtained by minimizing the following function with respect to q 

| | ( ) (1 ) | | ( )

( ) ( ) (1 ) ( ) ( )

y y

y q y q

y y

y q y q

y q dF y y q dF y

y q dF y y q dF y

 

 

 

 

   

   

 

 
 

Applying the first order condition for minimization problem which is by taking its partial derivatives with respect to q and 

equate the result to zero 

{ ( ) ( ) [ (1 )] ( ) ( )} 0
y q y q

y q dFy y y q dFy y 
 

       
  … (5) 

( ) ( ) (1 ) ( ) ( ) 0
y q y q

y q dFy y y q dFy y 
 

      
           … (6)  

Substituting in the limit we have (7) and opening the bracket will yield (8) 

−π[1−Fy(q)] + (1−π)Fy(q) = 0                                                                                            … (7) 

( ) ( ) ( ) 0Fy q Fy q Fy q        

−π + Fy(q) = 0 

π= Fy(q)                                                                                                                              … (8) 

Equation (8) solution is the πth quantile of Fy 

Conditional Quantile 

Using Chung-Ming, (2007) model, suppose we have Y as a response and X is the p dimensional predictor. Fy 

( |  denote the conditional cumulative density function of Y given =  then, the πth 
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conditional quantile of  can be denoted as  furthermore, if the random 

variable y depend on x that is event y happening conditioning on another random variable x is , its πth quantile can 

be given as 

1

| | |( ) ( )*y x y x y xQ F Q 
                               … (9) 

Equation (9) is a function of X, solving it by minimization and at the same time applying the first other condition yield 

| |min[ | | ( ) (1 ) | | ( )]y x y x
q

y q y q

y q dF y y q dF y 
 

    
          … (10) 

(0.5) is the conditional median which represents the center is the point of symmetry of . If π is close to zero ( ) 

is called the left tail of   . Also if ( )   is a linear function , (when q is substitute with X'β) unknown up to the 

parameter vector β then equation (10) becomes                             

| |min[ | | ( ) (1 ) | | ( )]x y X y
q

x X x X

x X dF x x X dF x
 

   
  

     
             … (11) 

Using the same principle as (8) above, we have 

( ) the solution is denoted as βπ which is the πth conditional quartile. 

Parameters Estimation 

Before estimating the parameters, let first of all look at ordinary least square. In OLS, we minimize the sum of squares of the 

error (the error term) and thereafter find the optional vaue of β0 and β1 that is 

OLS = min … (12) 

For the Quantile regression, we replace the square with absolute therefore its minimizes the absolute least deviation (LAD) 

LAD = min  … (13) 

The error term 0 1( )
ii i xe y    

 and hence the Quantile regression denoted by τ which is an extension least absolute 

deviation (LAD) can be expressed as  

1
{ | | (1 ) | |}

n

i ii
Q e Q e


  

… (14) 

replacing the value of  0 1( )i i ie y x   
  in equation (14) and we have  

0 1 0 1

1

{ | ( ) | (1 ) | ( ) |}
n

i i i i

i

Q y x Q y x    


      
 

τ=

… (15) 

it convenience to write (15) as 
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0, 1 0, 1
0 1 0 1

0 1 0 1

: :

min | ( ) | min (1 ) | ( ) |
i i i i

i i i i

i y x i y x

Q y x Q y x
   

   

    
   

       
         … (16) 

For OLS, we find the β0 and β1 by differentiation, maximum likelihood estimation but in quantile regression, we make use of 

linear programming (simplex algorithm, integer point algorithm or simplex algorithm). 

We formulate quantile regression problem in a way analogous to the formulation of least square (conditional mean) regression. 

Let Y be a random variable with some distribution function and a sample yi,i=1,2,…,n. The median of the set of sample yican be 

defined as the solution of the minimization problem. 

min | |,
n

ii
y R


 

         … (17) 

Estimating the value of β in (17) above, that is θth sample of yi then we have 

min{ | | (1 ) | |},
n n

i iy y
Q y Q y R

 
  

 
    

     … (18) 

Where Q is penalty imposed on under prediction and 1-Q is penalty imposed on over prediction. From linear regression model, 

let consider a set of random variables yi,iЄ[1,n],nЄN that are paired with a set of X={xi}, i=1,2,…,n and yi is a realization of Y 

and hence we have 

0 1 0, 1
0 1 0 1

0 1 0 1

{ : { : }

min | ( ) min (1 ) | ( ) |
i i i i

i i i i

i i y x i i y x

Q y x Q y x
   

   

   
    

      
    … (19) 

Since β can be β0,β1 and therefore βЄR becomes β0,β1ЄR. Converting the (19) to linear programming problem, we introduce a 

non-negative variable si and ri for which the following equation holds 

0 1 0 1( ) 0, { : }i i i i iy x s i i y x         
        … (20) 

10, { : }i i o is i i y x      

0 1 0 1( ) 0, { : }i i i i ix y r i i y x         
         … (21) 

0 10, { : }i i ir i i y x      

Since si and ri>0 on complementary sets. We can re-write (20) and (21) 

0 1( ) 0i i i iy x s r     
          … (22) 

0, 0, [1, ]i is r i n              … (23) 

Then (19) can be express as 

0 1 0 1, , 0, 1
{ : } { : }

min { (1 ) }
i i i ii i

i ii i y x i i y xs r
Qs Q r

          
  

    … (24) 

Since si≥0, ri≥0 then minimization function of (24) above becomes 
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, , 0, 1
1 1

min { (1 ) }
i i

n n

i ii is r
Qs Q r

   
  

        … (25) 

Equation (22), (23) and (25) are the linear programming formulation of the quantile regression of (19) above. In summary, the 

estimation of parameters in quantile regression is done via linear programming. 

III. RESULTS AND DISCUSSION 

Table Summary of Quantile Regression 

   Yield |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

0.05. HEIGHT |   26.82915   10.95797     2.45   0.018     4.771909     48.8864 

 TILLERS |  -.3909365   .9412576    -0.42   0.680     -2.28559    1.503717 

     _CONS |  -1281.001   674.3538    -1.90   0.064    -2638.405    76.40236 

0.10 HEIGHT |   28.42516   11.71113     2.43   0.019     4.851876    51.99845 

 TILLERS |   .3078091    .977165     0.32   0.754    -1.659122     2.27474 

    _CONS |  -1434.758   715.5499    -2.01   0.051    -2875.085    5.569423 

 

0.15     HEIGHT |      26.15   12.83133     2.04   0.047     .3218785    51.97811 

 TILLERS |   1.449999   .8440589     1.72   0.093     -.249003    3.149002 

    _CONS |   -1393.05   748.4139    -1.86   0.069    -2899.529    113.4293 

 0.20          HEIGHT |   38.93838    13.3661     2.91   0.006     12.03381    65.84295 

 TILLERS |   1.416289   .7238217     1.96   0.056    -.0406884    2.873266 

    _CONS |  -2080.622   756.3746    -2.75   0.008    -3603.125   -558.1194 

0.25.     HEIGHT |   45.32166   12.67594     3.58   0.001     19.80633    70.83699 

 TILLERS |   1.351982   .6517332     2.07   0.044     .0401111    2.663853 

    _CONS |  -2419.596   706.9043    -3.42   0.001    -3842.521   -996.6714 

0.30.     HEIGHT |   54.33097   11.80222     4.60   0.000     30.57434     78.0876 

 TILLERS |   .8941423   .8731224     1.02   0.311    -.8633619    2.651647 

               _CONS |  -2864.586    658.998    -4.35   0.000    -4191.081   -1538.092 

0.35      HEIGHT |   47.49151   11.00345     4.32   0.000     25.34271     69.6403 

 TILLERS |   .4441779   .9960077     0.45   0.658    -1.560682    2.449037 

    _CONS |  -2364.226   636.2711    -3.72   0.001    -3644.973   -1083.479 

0.40     HEIGHT |   46.71641   11.45156     4.08   0.000     23.66561     69.7672 

           TILLERS |   .9175528   1.161073     0.79   0.433    -1.419565    3.254671 

              _CONS |  -2320.985   669.2884    -3.47   0.001    -3668.192   -973.7769 

0.45     HEIGHT |   52.90792   11.87167     4.46   0.000     29.01148    76.80436 

           TILLERS |    .791709   1.418251     0.56   0.579    -2.063081    3.646499 

              _CONS |  -2629.956   719.3343    -3.66   0.001    -4077.901   -1182.011 

0.50    HEIGHT |   53.96568   11.90502     4.53   0.000     30.00212    77.92924 

          TILLERS |   .7645777   1.750539     0.44   0.664    -2.759075    4.288231 

             _CONS |  -2681.051    745.561    -3.60   0.001    -4181.788   -1180.315 

0.55    HEIGHT |   50.95909    13.0534     3.90   0.000     24.68397    77.23422 

         TILLERS |   .2454546   2.039178     0.12   0.905    -3.859198    4.350107 

            _CONS |  -2356.946   824.8908    -2.86   0.006    -4017.365   -696.5264 

0.60       HEIGHT |   45.91223   14.40138     3.19   0.003     16.92376    74.90071 

     TILLERS |  -.6259455   2.630528    -0.24   0.813    -5.920924    4.669033 

                   _CONS |  -1812.901   950.4585    -1.91   0.063    -3726.075    100.2722 

0.65  HEIGHT |   48.35139   14.48095     3.34   0.002     19.20276    77.50003 

     TILLERS |  -.7718782   2.710668    -0.28   0.777    -6.228169    4.684413 

        _CONS |  -1905.715   965.1009    -1.97   0.054    -3848.362    36.93283 

0.70  HEIGHT |   49.12381   16.04288     3.06   0.004     16.83117    81.41646 

                TILLERS |      -1.22   3.406536    -0.36   0.722    -8.077001    5.637002 

                   _CONS |  -1814.533   1051.535    -1.73   0.091    -3931.164    302.0966 
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0.75  HEIGHT |   44.68595   18.02229     2.48   0.017     8.408963    80.96294 

     TILLERS |  -1.643614   4.110853    -0.40   0.691    -9.918332    6.631104 

        _CONS |  -1438.929   1215.085    -1.18   0.242    -3884.769    1006.911 

0.80          HEIGHT |   46.99695   18.95242     2.48   0.017     8.847708    85.14618 

     TILLERS |   2.018369   4.573416     0.44   0.661     -7.18744    11.22418 

        _CONS |  -1909.834   1339.197    -1.43   0.161    -4605.498    785.8297 

0.85   HEIGHT |   48.55745   19.45285     2.50   0.016     9.400898      87.714 

    TILLERS |   6.913523   5.021539     1.38   0.175     -3.19431    17.02136 

       _CONS |  -2421.605   1358.815    -1.78   0.081    -5156.759    313.5478 

0.90        HEIGHT |   31.27261   18.56168     1.68   0.099    -6.090104    68.63533 

    TILLERS |    5.18504   5.012381     1.03   0.306     -4.90436    15.27444 

       _CONS |  -952.3943   1300.671    -0.73   0.468     -3570.51    1665.721 

0.95  HEIGHT |   37.65052   19.71045     1.91   0.062    -2.024554    77.32559 

    TILLERS |   1.540521   4.698095     0.33   0.744    -7.916253     10.9973 

          _CONS |  -766.5238   1170.506    -0.65   0.516     -3122.63    1589.582 

0.99       HEIGHT |   41.86546   20.02067     2.09   0.042     1.565931    82.16499 

       TILLERS |  -.8680157   3.855182    -0.23   0.823    -8.628094    6.892062 

          _CONS |  -643.6884   1081.384    -0.60   0.555    -2820.401    1533.024 

 

Fig. 4.1: Quantile Plot showing the distribution of the number of Tillers 

The above procedure creates a plot that shows the proportion of data below each observed value of the number of Tillers. 
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Fig. 4.2: Quantile Plot showing the distribution of Height (cm) 

The above procedure creates a plot that shows the proportion 

of data below each observed value of the number of Tillers. 

 

Discussion of Results 

The quantiles refer to the general case of dividing a dataset or 

population into quarters. In this work we made use of twenty 

(20) quantiles, namely: 5th quantile, 10th quantile, 15th 

quantile, 20th quantile, 25th quantile, 30th quantile, 35th 

quantile, 40th quantile, 45th quantile, 50th quantile (Median), 

55th quantile, 60th quantile, 65th quantile, 70th quantile, 75th 

quantile, 80th quantile, 85th quantile, 90th quantile, 95th 

quantile and 99th quantile using STATA Version 15 

Statistical software. The research modelled the Grain Yield 

(kg/ha) as a function of the number of Tillers and the height 

(cm) of the plant. 

From the summary table above, the result of 5th quantile 

showed that the number of tillers is insignificant with p-value 

of 0.680 while plant height is significant with p-value of 

0.018 at 0.05 level of significance. The result of 10th quantile 

showed that the number of tillers is insignificant with p-value 

of 0.754 while plant height is significant with p-value of 

0.019 at 0.05 level of significance. The result of 15th quantile 

showed that the number of tillers is insignificant with p-value 

of 0.093 while plant height is significant with p-value of 

0.047 at 0.05 level of significance. 

The result of 20th quantile showed that the number of tillers 

and plant height are insignificant with p-value of 0.056 and 

0.006 respectively at 0.05 level of significance.The result of 

25th quantile showed that the number of tillers and plant 

height are significant with p-value of 0.044 and 0.001 

respectively at 0.05 level of significance.The result of 30th 

quantile showed that the number of tillers is insignificant 

with p-value of 0.311 while plant height is significant with 

p-value of 0.000 at 0.05 level of significance.The result of 

35th quantile showed that the number of tillers is insignificant 

with p-value of 0.658 while plant height is significant with 

p-value of 0.000 at 0.05 level of significance. 

The result of 40th quantile showed that the number of tillers is 

insignificant with p-value of 0.433 while plant height is 

significant with p-value of 0.000 at 0.05 level of significance. 

The result of 45th quantile showed that the number of tillers is 

insignificant with p-value of 0.579 while plant height is 

significant with p-value of 0.000 at 0.05 level of 

significance.The median Regression result showed that the 

number of tillers is insignificant with p-value of 0.664 while 

plant height is significant with p-value of 0.000 at 0.05 level 

of significance.The result of 55th quantile showed that the 

number of tillers is insignificant with p-value of 0.905 while 

plant height is significant with p-value of 0.000 at 0.05 level 

of significance. The result of 60th quantile showed that the 

number of tillers is insignificant with p-value of 0.813 while 

plant height is significant with p-value of 0.003 at 0.05 level 

of significance.The result 65th quantile showed that the 

number of tillers is insignificant with p-value of 0.777 while 

plant height is significant with p-value of 0.002 at 0.05 level 

of significance. 

The result of the 70th quantile showed that the number of 

tillers is insignificant with p-value of 0.722 while plant height 

is significant with p-value of 0.004 at 0.05 level of 
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significance.The result of the 75th quantile showed that the 

number of tillers is insignificant with p-value of 0.691 while 

plant height is significant with p-value of 0.017 at 0.05 level 

of significance.The result of 80th quantile showed that the 

number of tillers is insignificant with p-value of 0.661 while 

plant height is significant with p-value of 0.017 at 0.05 level 

of significance.The result 85th quantile showed that the 

number of tillers is insignificant with p-value of 0.175 while 

plant height is significant with p-value of 0.016 at 0.05 level 

of significance.The result of the 90th quantile showed that the 

number of tillers is insignificant with p-value of 0.306 while 

plant height is significant with p-value of 0.099 at 0.05 level 

of significance.The result of the 95th quantile showed that the 

number of tillers and plant height are insignificant with 

p-value of 0.744 and 0.062 respectively at 0.05 level of 

significance.The result of the 99th quantile showed that the 

number of tillers and plant height are insignificant with 

p-value of 0.823 and 0.042 respectively at 0.05 level of 

significance. 

Analysis of Poisson Regression Model 

Generalized linear models                         No. of obs      =         49 

Optimization     : ML                                Residual df     =         46 

 

Variance function: V(u) = u                       [Poisson] 

Link function    : g(u) = ln(u)                    [Log] 

 

  AIC             =   8.325254 

Log likelihood   = -200.9687141                    BIC             =  -179.0237 

 

------------------------------------------------------------------------------ 

             |   Observed   Bstrap * 

       Yield |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      Height |   3.86e-15   2.03e-10     0.00   1.000    -3.97e-10    3.97e-10 

     Tillers |   7.12e-16   3.55e-11     0.00   1.000    -6.96e-11    6.96e-11 

       _cons |  -2.74e-13   1.30e-08    -0.00   1.000    -2.54e-08    2.54e-08 

ln(Yield) |          1  (exposure) 

------------------------------------------------------------------------------ 

 

Analysis of Gaussian Regression Model 

Generalized linear models                         No. of obs=         49 

Optimization     : ML                             Residual df     =         46 

Variance function: V(u) = 1                       [Gaussian] 

Link function    : g(u) = u                       [Identity] 

 

  AIC             =   15.14927 

Log likelihood   = -368.1570605                   BIC              =    9633368 

 

------------------------------------------------------------------------------ 

             |   Observed   Bstrap * 

       Yield |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      Height |   42.69765   10.21391     4.18   0.000     22.67876    62.71655 

     Tillers |   .4219653   1.380386     0.31   0.760    -2.283541    3.127472 

       _cons |  -1820.388   647.7526    -2.81   0.005     -3089.96   -550.8161 

ln(Yield) |          1  (exposure) 

------------------------------------------------------------------------------ 

 

In generalized linear models  

 Poisson regression model, the result showed that the number 

of tiller and plant height are insignificant with p-value of 

1.000 and 1.000 respectively at 0.05 level of insignificance. 

For Gaussian regression model, the result showed that the 

number of tiller is insignificant and plant height is significant 

with p-value of 0.000 and 0.760 respectively at 0.05 level of 

significance. 
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IV. CONCLUSION 

In this research work, we have demonstrated the potential use 

of quantile regression in dealing with rainfed barley 

observation nursery. Using real dataset, the result showed in 

table 4.5 above, that the number of tillers and plant height are 

significant with p-value of 0.044 and 0.001 respectively at 

0.05 level of significance. Meanwhile the generalized linear 

model, the poisson regression model and Gaussian regression 

model is not significant. Quantile regression is a robust 

regression to outliers compared to generalized linear 

regression models.Traditional means regression models like 

Generalized Linear Model (GLM) are not able to capture the 

entire distribution of the data. 

However, from quantile 5 to99, the quantile regression tells 

us what happened as we move from the smallest to the 

highest quantile. In estimating the goodness of fit test for the 

model for proper forecasting. The model has been established 

in equation 25th Quantile with the best yield which is 

significant and the best amongst others. Quantiles regression 

will be able to provide not just a single value for estimation 

but for numerous quantiles. 
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