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 

Abstract— Bayesian optimal designs for binary responses 

analyzed with logistic regression describing a linear health effect 

were considered. To overcome the problem of dependence of 

Bayesian designs on the choice of prior distributions, Bayesian D 

& A-optimal designs were proposed for logistic regression 

model. The results show that the optimal number of time points 

depends on the subject-to-measurement cost ratio and increases 

with the cost ratio. Furthermore, Bayesian D & A-optimal 

designs are highly efficient and robust under changes in priors. 

When implementing the efficiencies of designs with the Bayesian 

D- & A-optimal designs in modelling chronic heart disease, age 

and body mass index, it was found that age and BMI are 

significant in patients heart disease. 

Index Terms— Bayesian Logistic Regression, D-Optimality, 

A-Optimality, Chronic Heart Disease.  

 

I. INTRODUCTION 

Experimental Design is an a priori concept, taking place 

before data has been collected, and hence the Bayesian 

paradigm is a particular appropriate approach to take. 

Bayesian methods allow available prior information on the 

model to be incorporated into both the design of the 

experiment and the analysis of the resulting data, and produce 

posterior distributions that are interpretable by scientists. 

They alsoreduce reliance on unrealistic assumptions and 

asymptoticresults that may be inappropriate for small 

tomedium-sized experiments. The Bayesian approach to 

design enables realistic and coherent accounting for the 

substantial model and parameter uncertainties that usually 

exist before an experiment is performed and it is also a natural 

framework for sequential inference and design. An important 

problem where Bayesian methods can have substantial impact 

is optimal design for linear modelling, which relies on some 

prior information being available about the unknown values 

of the model parameters. Atkinson et al, (2007). 

A Bayesian approach relaxes the requirement of locally 

optimal design criteria to specify particular values of the 

parameters. Fully Bayesian design, predicated on using the 

posterior distributions for inference, is also less reliant on the 

asymptotic assumptions that underpin most classical design 

for generalized linear models. Until very recently, optimal 

Bayesian design has notevolved far from the methods 

 
Ali H., Department of Mathematics, University of Jos, Nigeria 

Nwaosu S. C., Department of Statistics, Joseph Sawuaan Tarka University 

of Agriculture, Makurdi, Nigeria 

Lasisi K. E., Department of Mathematical Sciences, Abubakar Tafawa 

Balewa University,P. M. B. 0248, Bauchi, Nigeria. 

Abdulkadir  A., Department of Mathematical Sciences, Abubakar Tafawa 

Balewa University,, P. M. B. 0248, Bauchi, Nigeria 

 

 

reviewed by Chalonerand Verdinelli (1995). Development 

and applicationof methods for Bayesian design have lagged 

behindthe progress made in inference and modelling dueto the 

additional complexity introduced by the needto integrate over 

the (as yet) unobserved responses,in addition to unknown 

model parameters. Hence,methodology has been restricted to 

simple models and fully sequential, one-point-at-a-time, 

procedures. Ryan et al. (2016). 

Design of Experiments for binary responses are very 

important in biological and clinical trials. Discussion of the 

non-Bayesian design for logistic regression models can be 

found in Finney (1999). However, a design optimal to a best 

guess may not be efficient for parameter values close to the 

best guess so that the design is not quite robust to the 

parameter misspecification. Chaloner and Larntz (1989) 

examined the Bayesian optimal design for the one-variable 

logistic regression model using the Nelder-Mead algorithm. 

However, since the Nelder-Mead algorithm is a 

local-optimization method, the selection of starting design 

points has great influence on the performance of the 

procedure in getting to the global optimum. Furthermore, it 

would be much less efficient to use this algorithm for 

multi-variable nonlinear regression models. Here, the 

Bayesian optimal design approach is proposed for 

multi-variable logistic regression models. 

II. MATERIALS AND METHODS 

We examine the Bayesian D-optimal design for some 

logistic models. The logistic regression model is very useful 

in modelling the binary responses, in a generalized linear 

model with unknown parameters in the information matrix. 

The Bayesian D-optimality is given by; 

      1 log det ,X E I X
 

    
      … 

(1) 

which selects the design measure X maximizing 
 1 X

. 

Assuming that the experimenter does not know much 

information about the parameters, a range of uniform and 

independent prior distributions for the parameters are used to 

find the Bayesian optimal design points. 

We also examine the Bayesian A-optimal design for some 

logistic models. The logistic regression model which is very 

useful in modelling the binary responses, is a generalized 

linear model with unknown parameters in the information 

matrix. The Bayesian A-optimality is given by; 

        1

2 ,X E tr A I X
 

  
  

 
    

 … (2) 
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which selects the design measure X maximizing 
 2 X

. 

Assuming that the experimenter doesn’t have much 

knowledge about the parameters, a range of uniform and 

independent prior distributions for the parameters are used to 

find the Bayesian optimal design points. 

The logistic regression model can be written as 

 

 

 

,

1

1 exp

ij i

i T

i

y Logistic n

where

n
x 


 



       . . .  (3) 

We define yij in (3) to be response for the j
th

 replicate of the 

i
th

 design point and assume it follows a logistic distribution 

with ni as the mean; xi is the regressor vector at the i
th

 point 

and 


 is the parameter vector. For the one-variable model 

and two-variable additive model, 

 0 1

1

1 exp
i

i

n
x 


  

         . . . (4) 

 0 1 1 2 2

1

1 exp
i

i i

n
x x  


   

        . . . 

(5) 

Denote by ip
 the proportion of whole sample size at i th

 

design point ix
, hence 

1.in 
 

Also write 
 1i i iw n n 

 for 
1,2,..., .i k

 The Fisher 

information matrix 
 ,I X

 for the 

logistic regression model can be written as 

 
1

,
k

T

i i i i

i

I X p w x x



         . . . (6) 

Where ix
 is a p × 1 design vector of the 

thi  design points. 

EFFICIENCY OF THE BAYESIAN D-OPTIMAL 

DESIGN 

The goal of the Bayesian D-optimal design is to find design 

points at which the determinant 

of the Fisher information matrix evaluated at the true 

parameter values is maximized. The 

D-efficiency is defined as the ratio of the determinant of the 

Fisher information matrix with the chosen design points to 

that with the true D-optimal design points at the true 

parameter values, i.e., 

 X1

 

 

,

,

true

D opt true

I X
D eff

I X





 

      . . . 

(7) 

INFORMATION MATRICES FOR LOGISTIC 

MODELS 

For a design measure, X, on Y putting ip
 weight at k 

distinct design points ix
, i = 1, · · · k, 

1.in    In general, 

the Fisher information matrix 
 ,I X

 for the generalized 

linear regression model can be written as 

 
1

,
k

T

i i i i

i

I X p w x x



       . . . (8)  

where xi is a p × 1 design vector of the i
th

 design points, and 

 1i i iw n n 
 for logistic regression models. 

A general logistic regression model is given in (3) and its 

associated two different models, namely, the one-variable 

model and two-variable model, are given in equations (4)– 

(5), respectively. 

For the one-variable logistic regression model, the Fisher 

information matrix can be written as 

 0 1 2
, ,

i i i i i

i i i i i i

p w p w x
I X

p w x p w x
 

 
   
 

 
 

    
 . . . (9) 

while for the two-variable logistic regression model, the 

Fisher information matrix can be written as 

 
1 2

2

0 1 2 1 1 1 2

2

2 1 2 2

, , ,

i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

p w p w x p w x

I X p w x p w x p w x x

p w x p w x x p w x

  

 
 

  
 
 

  
  
  

  . . . (10) 

Consider the broad class of models for which the response, 

Y, follows a logistic distribution with the expectation 

 iP x 
, where P is a cumulative distribution function. 

For the estimation of  and i , the exact optimal design 

problem is to choose k distinct x1…, xk and niobservations on 

each of xi with respect to some optimality criterion for fixed n. 

Here 1
.

k

ii
n n




 Since this is a difficult and often 

intractable optimization problem, the corresponding 

approximate design, in which 
in

n is replaced by i , is 

considered. Thus, a design can be denoted by 

  , , 1,..., ,i id x i k 
, where i >0 and 

1
1.

k

ii





 We shall denote the entire class of all such 

designs by D. 

It is well known that the information matrix for a given 

design d is 
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Here i i ic x  
and 

        2
1 1 .i i i ic P c P c P c      

 We shall 

assume that P satisfies the following condition. 

Conditions (i): the density function P’ is symmetric about 

zero; 
 0

>0 and 
 lim 0c c 

; when c >0, 

 c
>0, 

  
1

2

1

c


>0, and 
  

1
2

11

c


>0. 

Condition (i) is not demanding. In fact, commonly used 

generalized linear models for binary response, such as 

logistic, probit, and Poisson models, satisfy condition (i).  

EFFICIENCY OF THE BAYESIAN A-OPTIMAL 

DESIGN 

The goal of the Bayesian A-optimal design is to find design 

points at which the trace of the Fisher information matrix 

evaluated at the true parameter values is maximized. The 

A-efficiency is defined as the ratio of the determinant of the 

Fisher information matrix with the chosen design points to 

that with the true A-optimal design points at the true 

parameter values, i.e., 

 
 

 2

,

, true

A opt true

tr X
X

I X








       . . . (11) 

INFORMATION MATRICES FOR LOGISTIC 

MODELS 

For a design measure, X, on Y putting ip
 weight at k 

distinct design points ix
, i = 1, · · · k, 

1.in    In general, 

the Fisher information matrix 
 ,I X

 for the generalized 

linear regression model can be written as 

 
1

,
k

T

i i i i

i

I X p w x x

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       . . . (12)  

where xi is a p × 1 design vector of the i
th

 design points, and 

 1i i iw n n 
 for logistic regression models. 

A general logistic regression model is given in (3) and its 

associated two different models, namely, the one-variable 

model and two-variable model, are given in equations (4)–(5), 

respectively. 

For the one-variable logistic regression model, the Fisher 

information matrix can be written as 

 0 1 2
, ,

i i i i i

i i i i i i

p w p w x
I X

p w x p w x
 

 
   
 

 
 

    
 . . . (13) 

while for the two-variable logistic regression model, the 

Fisher information matrix can be written as 

 
1 2

2

0 1 2 1 1 1 2

2

2 1 2 2

, , ,

i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i
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  . . . (14) 

Let 
( ) ( )i if x Bernoulli n

 be the response from the 

experiment with variable settings xi and  

2 2 2

0

1 1

log ,
1

i
j ij jk ij ik

j j k ji

n
x x x

n
  

  

 
   

 
 

   
  . . . (15) 

Where 0 1 2 11 12 22, , , , ,     
 are unknown parameters 

to be estimated. Here, 
( )i ix n 

 and the variance is given 

by 
{ ( )} [1 ]i i iVar x n n  

 with 
1 

. To show some 

Bayesian design concepts, Atkinson and Woods (2015) 

assumed the following independent prior distributions for the 

parameters:  

1 2, (2,6),U  
 0 3, , ( 2, 2),jk U   

 for j, k = 1, 

2, 3.  . . . (16) 

THE HOSMER & LEMESHOW 

GOODNESS-OF-FIT TEST 

The steps of constructing the test: 

1.  For a given logistic regression model, compute the 

resulting estimated probabilities for all observations in the 

model. The steps of constructing the test: 

1.  For a given logistic regression model, compute the 

resulting estimated probabilities for all observations in the 

model 

0 1 1

1
ˆ

ˆ ˆ ˆ1 exp( ... )
i

i k ik

n
X X  


    

 
2.  Sort the data in increasing order byni and create g groups 

(if possible, g=10 approximate deciles) 

3.  Compute the total observed number of cases and the 

total expected number of cases 

jO
 - observed number of cases in decile j 

ˆ
j ii Groupj

E n



- expected number of cases in decile j 

4.  Compute the test statistic 

 

 

2

2

21

ˆ

1 j

j

g j j

gEi

j n

O E
C

E
 





 

 
under H0:"good fit" 

Large values of ̂ Ĉ (and small p-values) indicate a lack of 

fit. 
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Small values of Ĉ  (and large p-values) indicate a good 

model fit. 

III. APPLICATIONS 

Study population 

All patients that reported at the clinic, Jos University 

Teaching Hospital (JUTH), Plateau State, Nigeria, that met 

the inclusion criteria who gave consent were enrolled for the 

study between 10
th

 June 2021 and 10
th

 December, 2021.  

Preparation for data collection  

The researchers had audience with the patients on the 

appointment date and discussed the study procedure, process, 

import and expected date for commencement/conclusion of 

the study. Clarifications on any grey areas were sought.  

Ethical consideration/approval  

Ethical clearance was obtained from the Institutional 

Health Research Ethical Committee of the Jos University 

Teaching Hospital. Participants’ anonymity and 

confidentiality were maintained in accordance with the 

Helsinki Declaration.  

Data collection instrument  

Weights of all the participants were measured using a brand 

new calibrated digital bath room weighing scale while heights 

were measured in meters on a standardized calibrated wall 

which could be substituted with a standard measuring tape in 

dire emergencies/the critically ill. All  

was without shoes, minimal clothing for weight and less of 

hair inclusion for height.  

 

Data collection/procedure  

All consecutive participants were enrolled for the study at 

the Clinic Hall. Data was generated from their biodata, 

measured heights to the nearest 0.01 m which we used a 

standardized calibrated wall while their weights to the nearest 

0.01 kg using a brand-new calibrated bathroom digital 

weighing scale of 120 kg capacity model number BR 9011, 

made in China. Measurements were recorded without shoes 

with minimal clothing during weighing while in measuring 

heights we adopted measures that involved less hair inclusion. 

Initials were used to conceal identity.  

The result was subjected to statistical analysis.  

summarize 

Variable |            Obs            Mean        Std. Dev.       Min        Max 

-------------+--------------------------------------------------------- 

AGE |             200            24.62         4.339326        19         34 

WEIGHT |         200           50.36345    11.21777       29.6       94.9 

HEIGHT |          200           1.56654     .1199724      1.314       1.87 

BMI |              200           20.49175    3.990604   13.97753   37.29593 

CHD |             200           .405            .4921239          0          1 

Bayesian Logistic Regression for a Single Variable 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate 
Standard 

Error 
Wald 95% Confidence Limits 

Intercept 1 -1.0725 0.8366 -2.7122 0.5672 

Age 1 0.0279 0.0332 -0.0372 0.0929 

Scale 1 0.4900 0.0245 0.4443 0.5405 

Note: The scale parameter was estimated by maximum likelihood. 

Bayesian Analysis 

Independent Normal Prior for Regression Coefficients 

Parameter Mean Precision 

Intercept 0 1E-6 

Age 0 1E-6 

Algorithm converged. 

Independent Prior Distributions for Model Parameters 
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Parameter Prior Distribution 

Dispersion Proper 

Initial Values of the Chain 

Chain Seed Intercept Age Dispersion 

1 
68785312

7 
-1.07245 

0.02786

1 
0.237748 

Fit Statistics 

DIC (smaller is better) 288.540 

pD (effective number of parameters) 3.111 

 

Bayesian Analysis 

Posterior Summaries 

Parameter N Mean 
Standard 

Deviation 

Percentiles 

25% 50% 75% 

Intercept 10000 -1.0942 0.9005 -1.6925 -1.0900 -0.5043 

Age 10000 0.0283 0.0359 0.00434 0.0284 0.0519 

Dispersion 10000 0.2454 0.0247 0.2280 0.2442 0.2610 

Posterior Intervals 

Parameter Alpha Equal-Tail Interval HPD Interval 

Intercept 0.050 -2.9028 0.7463 -2.9797 0.5670 

Age 0.050 -0.0446 0.0992 -0.0402 0.1017 

Dispersion 0.050 0.2016 0.2978 0.1992 0.2942 

Posterior Correlation Matrix 

Parameter Intercept Age Dispersion 

Intercept 1.000 -0.986 0.008 

Age -0.986 1.000 -0.010 

Dispersion 0.008 -0.010 1.000 

 

Bayesian Analysis 

Posterior Autocorrelations 

Parameter Lag 1 Lag 5 Lag 10 Lag 50 

Intercept 0.7410 0.1351 0.0326 0.0385 

Age 0.7402 0.1310 0.0291 0.0422 

Dispersion 0.0079 0.0028 0.0041 -0.0034 

Geweke Diagnostics 

Parameter z Pr > |z| 

Intercept -0.3658 0.7145 

Age 0.5878 0.5567 

Dispersion 3.0455 0.0023 

Effective Sample Sizes 

Parameter ESS 
Autocorrelation 

Time 
Efficiency 

Intercept 1380.0 7.2464 0.1380 

Age 1404.3 7.1211 0.1404 

Dispersion 10000.0 1.0000 1.0000 
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Figure 1.In the panel of the diagnostic plots above, the first graph shows sparsely good spikes for the posterior distribution of 

the intercept. Autocorrelations are high in the first ten lags but low towards the end, and the posterior density is is approximately 

normal and a bit smooth.  

 

 
Figure 2:In the panel of the diagnostic plots above, the first graph shows sparsely good spikes for the posterior distribution of 

the Age. Autocorrelations are slightly high in the first ten lags but low towards the end, and the posterior density is is 

approximately normal and a bit smooth. 
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Figure 3:In the panel of the diagnostic plots above, the first graph shows densely good spikes for the posterior distribution of 

the dispersion. Autocorrelations ishigh in the initial lag but low from lag one to the end, and the posterior density is is 

approximately normal and bit smooth. 

Bayesian Logistic Regression for two Variables 

Bayesian Analysis 

Algorithm converged. 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate 
Standard 

Error 
Wald 95% Confidence Limits 

Intercept 1 -1.1107 1.1328 -3.3310 1.1096 

Age 1 0.0279 0.0332 -0.0371 0.0930 

BMI 1 0.0018 0.0359 -0.0686 0.0721 

Scale 1 0.4900 0.0245 0.4443 0.5405 

Note:The scale parameter was estimated by maximum likelihood. 

 

Bayesian Analysis 

Independent Normal Prior for Regression Coefficients 

Parameter Mean Precision 

Intercept 0 1E-6 

Age 0 1E-6 

BMI 0 1E-6 

Algorithm converged. 
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Independent Prior Distributions for Model Parameters 

Parameter Prior Distribution 

Dispersion Improper 

Initial Values of the Chain 

Chain Seed Intercept Age BMI Dispersion 

1 1254751374 -1.11058 0.027914 0.001792 0.237744 

Fit Statistics 

DIC (smaller is better) 290.663 

pD (effective number of parameters) 4.150 

 Bayesian Analysis 

Posterior Summaries 

Parameter N Mean 
Standard 

Deviation 

Percentiles 

25% 50% 75% 

Intercept 10000 -1.0138 1.2298 -1.8206 -1.0334 -0.2472 

Age 10000 0.0266 0.0359 0.00259 0.0263 0.0497 

BMI 10000 -0.00230 0.0401 -0.0282 -0.00202 0.0240 

Dispersion 10000 0.2465 0.0251 0.2291 0.2448 0.2626 

Posterior Intervals 

Parameter Alpha Equal-Tail Interval HPD Interval 

Intercept 0.050 -3.5154 1.4830 -3.2465 1.6900 

Age 0.050 -0.0455 0.0984 -0.0395 0.1019 

BMI 0.050 -0.0833 0.0747 -0.0818 0.0751 

Dispersion 0.050 0.2016 0.3005 0.1980 0.2958 

Posterior Correlation Matrix 

Parameter Intercept Age BMI Dispersion 

Intercept 1.000 -0.736 -0.686 0.006 

Age -0.736 1.000 0.028 0.007 

BMI -0.686 0.028 1.000 -0.019 

Dispersion 0.006 0.007 -0.019 1.000 

  

Bayesian Analysis 

Posterior Autocorrelations 

Parameter Lag 1 Lag 5 Lag 10 Lag 50 

Intercept 0.7556 0.2216 0.0532 0.0187 

Age 0.7657 0.2121 0.0626 -0.0074 

BMI 0.7394 0.2074 0.0567 -0.0008 

Dispersion 0.0348 0.0206 -0.0015 -0.0031 

Geweke Diagnostics 

Parameter z Pr > |z| 

Intercept -1.4414 0.1495 

Age 0.4848 0.6278 

BMI 1.1714 0.2414 

Dispersion 0.4732 0.6361 
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Effective Sample Sizes 

Parameter ESS 
Autocorrelation 

Time 
Efficiency 

Intercept 1424.4 7.0207 0.1424 

Age 1305.5 7.6597 0.1306 

BMI 1462.0 6.8400 0.1462 

Dispersion 8252.7 1.2117 0.8253 

  

 

Bayesian Analysis 

 
Figure 4:In the panel of the diagnostic plots above, the first graph shows good sharp spikes for the posterior distribution of the 

intercept. Autocorrelations are high in the first ten lags but low towards the end, and the posterior density is is approximately 

normal andnot too smooth.  

 



 

Bayesian D & A Optimal Designs for Logistic Regression Model with Biomedical Application 

 

                                                                                    22                                                                             www.wjir.org 

 
Figure 5:In the panel of the diagnostic plots above, the first graph shows sparsely good spikes for the posterior distribution of 

the Age. Autocorrelations are high in the first ten lags but low towards the end, and the posterior density is is approximately 

normal andnot smooth between -0.1 and 0.2.  

 

 

 
Figure 6:In the panel of the diagnostic plots above, the first graph shows sharpspikes for the posterior distribution of the Body 

Mass Index. Autocorrelations are high in the first ten lags but low towards the end, and the posterior density is is approximately 

normal and a bit smooth -0.1 and 0.1.  
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Figure 7:In the panel of the diagnostic plots above, the first graph shows densely good spikes for the posterior distribution of 

the dispersion. Autocorrelations are high in the first lag but low towards the end, and the posterior density is is approximately 

normal between 0.15 and 0.35. 

Above are examples of important diagnostic plots 

automatically produced by GENMOD (and by other 

procedures in SAS) (Fig. 1, 2, 3, 4, 5, 6 and 7).  These three 

plots are produced for each parameter in the model. Results 

for the intercept parameter is shown in Fig. 1 and 2. In each 

figure there are 3 sub-plots: trace plot, autocorrelation plot 

and posterior density plot. In Fig. 1, the first plot is the trace 

plot, a sequential graph of all the MCMC samples in the 

chain. Note that the first sample starts at 2000 because the 

burn-in was 2000 (default). There are then another 10,000 

samples generated. The trace plot in Fig. 1 is the ideal that one 

should be looking forward for. There is no trend, and the 

values jump randomly above and below the central value. The 

autocorrelation plot shows the serial correlation of each 

sample in the chain with the previous samples; lag 1 is for 

each sample with the previous one, lag 2 is for each sample 

with the one two samples previously, and so on. At lag 0, the 

autocorrelation is 1, by definition, but is shown to provide 

perspective in interpretation. In Fig. 1, the lag 1 correlation is 

very close to 0, and the remaining correlations are even closer 

to 0. This is ideal.  Finally, the posterior density plot is an 

estimate of the posterior distribution based on the 10,000 

samples used from the trace plot (Fig. 1). A kernel smoothing 

algorithm is applied to the values to produce the curve. This 

posterior density is the ultimate goal of the Bayesian analysis. 

Summary statistics are derived from the samples that 

comprise the empirical density, such as the mean, median, 

standard deviation, and so on. Figure 7 shows an example that 

is slightly less than ideal. First, note that only 200 samples are 

generated in this example after the 2,000 burn-in samples and 

as such, the values are less crowded. One can see that the 

samples do not simply jump randomly around a central value, 

but sometimes move a bit slowly above and below the center 

value. 

We know that positive values of beta are associated with 

increased probability that patients with chronic heart disease 

belong to the corresponding age and body mass index. 

Looking at the plots above, age and body mass index have 

positive beta values. 

Negative values of beta are associated with decreased 

probability that patients with chronic heart disease belong to 

the corresponding age and body mass index. Looking at the 

plots above, none of the parameters fall in this group. The 

posterior distributions allow us to compute the mean and 

standard deviation of beta values per age and per BMI 

respectively as illustrated in the plots above. Based on these 

results, we can conclude that the beta posteriors are 

distributed uniformly across age and BMI respectively. This 

evidence is in support of the varying-intercept models. 
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Model D-Optimality A-Optimality D-Efficiency A-Efficiency 

BayesLogit 2.8638e+011 1.341 99.806 99.683 

IV.  CONCLUSION 

In this paper, a Bayesian optimal design framework is 

implemented for D- & A-Optimality using SAS. Bayesian D- 

& A-Optimality criteria is derived based on expected 

Shannon information gain on the optimum point using 

STATA 15. To evaluate the proposed criteria, an algorithm to 

evaluate the analytically intractable design criterion is 

derived. Bayesian logistic regression has the benefit that it 

gives us a posterior distribution rather than a single point 

estimate. The Bayes Logistic showed high D- and 

A-efficiency of 99.806 and 99.683 respectively and positive 

optimality. The results also showed that age and Body Mass 

Index positively affect the incidence of having chronic heart 

disease. 
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