
https://doi.org/10.31871/WJIR.9.1.28 World Journal of Innovative Research (WJIR)

 ISSN: 2454-8236, Volume-9, Issue-1, July 2020 Pages 106-114

 106 www.wjir.org



Abstract— This article looks at the similarities between the

two most common system development tools, Data Flow

Diagram DFD and Unified modelling Language UML

diagrams. It explored the intricacies of the function of notations

and meanings of the symbols used in the two modelling tools by

pointing out the similarities and contrast between them, then

subsequently established facts of how the two modelling tools

can be blended together to leverage a combined benefits of the

two modelling tools as an entity in system development process.

The research also put side by side the techniques for process

modelling which includes interview, questionnaire, survey

group and observation. Hence, it provided detailed analysis to

justify when one can be preferred over another and made

further recommendation on the most efficient model to adopt

during process modelling. The article chose as a case study a

coach system captioned World Wide Tour Management System

(TMS) operating in most part of Europe but predominantly in

the UK which is broad enough to provide scenarios for

demonstrating the benefits of using Use Case Diagram (UCD),

Class Diagram, Communication Diagram and Sequence

diagram during both analysis and design phase of process

development. In conclusion it was established that DFD are

most suited for understanding of functionality of the system

operations at requirement gathering stage where as UML

models seamlessly reveals all software objects necessary for

constructing the proposed system under consideration.

Index Terms— Tools, Technique, Process Modelling,

Harmonization.

I. INTRODUCTION

The focus of this work is to explore and present the

features of system development tools and techniques as they

evolve over time from the early stage of Data Flow Diagrams

(DFDs) to the emergence of UnifiedModelling Language

(UML) diagrams and come up with ways of harmonizing

them with the aim of achieving the combined benefits of the

two structured modelling processes in business process

modelling. DFD is an organized framework that models the

operations of a system from a generalized perspective thus

abstracting the underlying details of the processes embedded

within the system and then subsequently refines them in a

stepwise manner [5]. Conversely, UML is an object oriented

hierarchical model that models the detail processes of a

sophisticated system into software objects using varieties of

analysis and design tools and diagrams relative to the design

stage or context of the system under consideration.

Early business process modelling notation adopting the

Nengak Iliya Sitlong, Computer Science Department, Federal College of

Education, Pankshin Plateau Sate, Nigeria

Francisca Ogwuleka Nonyelum, Cyber Security Department, Nigerian

Defence Academy, Kaduna, Nigeria

object oriented analysis and design approach such as the

Object Modelling Technique (OMT) pioneered by (Loomis,

1987) used Data-Flow-Diagrams (DFD‟s), Class diagrams,

Decision trees and Structured English to model business

processes into software objects. DFD‟s models business

processes satisfactorily by abstracting the complexities in the

detail structures of the business starting with a context

diagram usually referred to as the Level Zero (0) [7]. The

context diagram which models the entire system is further

subdivided into more refined levels usually call Level one up

to level three where it becomes clearer to hand over to the

software developer.

DFD‟s have now been replaced by Unified Modelling

Language (UML) diagrams that logically structure the hidden

details formally abstracted by the DFD‟s into set of object

oriented diagrams such as the Use Case Diagram (UCD),

Class Diagrams, Communication, Sequence, Activity

Diagrams amongst others [10].

A. Focus of this Study

The essence of this work is to justify where systems

development tools such as DFD symbols relates to UML

diagram symbols to effectively and efficiently model

business processes to leverage its full benefits with

consideration to the right technique to adopt.

B. Important Definitions to this Discuss:

i. Model: In business context a model represent

the manner in which a business should

operate, taking into account the business

goals, purpose, strategies and productivity.

ii. Business Process Model: Business process

model provides the standard view of the

business goal.

iii. Business Rules: Business rules are the

guidelines about how business transactions

are run. Business rules are grouped as:

 Derivation rule (for instance compute the

result of).

 Constraint rules (example allow or

disallow access).

 Existence rules (for example, ensure the

existence of customer object.

iv. UML: Unified Modelling Language (UML) is a

modelling language made up of notations

and set of meaning and structural rules for

guiding its use [12].

UML Diagrams that are of Relevance to this Discussion

Includes:

Class Diagrams: A class diagram consist of description

Harmonization of Tools and Techniques for System

Development

Nengak Iliya Sitlong, Francisca Ogwuleka Nonyelum

Harmonization of Tools and Techniques for System Development

 107 www.wjir.org

for a collection of objects and the data sequence associated

with them and their respective behaviors, a class can be

information, organization, actor, or products.

Activity Diagram: Activity diagrams describe the flow of

processes in a business modelling. The flow may contain

receive, guard, process-Clauses.

Use Case Diagram (UCD): Use case Diagrams are used to

represent the relationship between different use cases. A use

case represents the interaction between an actor (user) and the

system‟s function. Use case may have include (mandatory

path) and extend (optional channel).

Communication diagram: This represents the interaction

between an actor with the boundary (example GUI) and the

imaginary background processes call a control that mediates

messages between other entities.

Sequence Diagram: This inherits from the

communication diagram and it shows the details of

movement of messages between processes and their live lines

[6].

v. Data Flow Diagram (DFD) language consist of four

symbols namely process, data flow, data store and external

entity.

Process: A process is an operation executed for a

particular business purpose.

Data Flow: Data Flow can be a unit of data (such as

“Product price”) or an organized piece of information such as

customer detail.

Data Store: Data Store is a repository of data organized in

a specific format, and data can be retrieved from or added to

it.

External Entity: An External Entity is an object that is

external to the system but communicates with it, this

corresponds to the actor in a use case [8].

II. REVIEW OF RELATED WORKS

So many related works have been carried out in trying to point

out the similarities that exist between DFD and UML

diagrams. [16] outline the interwoven nature of DFD symbols

and UML symbols basing the analysis on UCD and Class

diagrams. It was established in the preceding research that the

External entity in a DFD plays exactly the same role as the

actor in a UCD which is of course external to the system too

but interacts with it, these external entities or actors could be

individuals, or any other gadgets. Further, the use cases in the

UCD corresponds directly to the processes in a DFD and are

easily interpreted for requirement gathering by the software

developer [6]. The two modelling languages are both

hierarchical structured modelling techniques. However, DFD

uses uniform class of symbols in all stages of process

modelling with supportive structures like decision table,

decision tree and structured English. Unlike DFD, UML

diagram structures a system in an object oriented perspective

by bundling together its attributes with its methods or

behaviors using separate representations at several stages of

its refinement such as communication diagrams, sequence

diagrams activity diagrams etc. This article concur with the

established fact by [19] that the data store in a DFD has no

difference with a class in UML diagram. This is obvious due

to data storage capabilities which offers room for data

manipulation through the application of different operations

such as search, remove, and add amongst other operations on

its data, classes in UML does exactly the same [14].

Atif, (2011), proposed that DFD are more communicative

than UCD in presenting user requirements therefore UCD

should be substituted by DFD in representing user

requirements. The research further stated that the context

diagram of DFD translates into UCD by equating data stores

to actors, processes to use-cases and data flows into

associations. Finally, the data stores will then be expanded

into classes in building class diagrams, and all the associated

operations to the data stores regarded as functions for the

class and associated data units as attributes. This makes a lot

of sense to this work because is in tune with the set goal.

A. Additional Correlations between DFD and UML

Model Notations

This work explores further points of intersection between

UML diagrams and DFD other than the above mentioned

ones. Firstly, UCD without the partitions or swim lanes added

to it is similar to a logical DFD because they both do not say

where or who carries out what operation. Therefore they are

both inadequate at their basic states. Partitions in UCD

correspond to a physical DFD with the added details.

Further, the Use-Case-Description can be liken to the

Structured-English of DFD because they both play the same

complimentary role of giving detail explanation to concept

that are complex to comprehend on the models produced such

as their semantics.

UML sequence diagram can be deduced from a DFD by

mapping the external entity to an actor, external entity data

flow as a boundary, process to a control, and the sinks or data

stores to the entities of the sequence diagram and finally the

data flows to and from processes and data stores as messages

passed across.

In activity diagram, DFD processes can map into the series

of Activities, Send to an actor, Receive to a data store or

sink, Decision Point to a process with two emanating data

flows, the guards can express control flow mutual

exclusiveness which is lacking in DFD processes, activity

diagram Control Flow corresponds to a single data flow to or

from a DFD process. This is logical because activity diagrams

are mostly used during analysis phase to model the processes

in a use case diagram than they are used in design phase

which is also true of DFD‟s. They are more useful in

modelling the system functions than focusing on software

objects involved which is what UML design is for.

To better understand the above explained systems

development tools, it is imperative to introduce certain

practical scenario. The case study for this purpose is a Tour

Management System (TMS) captioned Wide World Tour

Management System.

III. WIDE WORLD TOUR MANAGEMENT SYSTEM

(TMS) CASE STUDY

“Wide World Coach Tours operates coach tours of varying

durations, mostly in the UK but also to European cities. The

company operates a fleet of coaches and maintains a list of

associates as drivers and as tour leaders; most but not all

https://doi.org/10.31871/WJIR.9.1.28 World Journal of Innovative Research (WJIR)

 ISSN: 2454-8236, Volume-9, Issue-1, July 2020 Pages 106-114

 108 www.wjir.org

associates are self-employed. Administrative staff and

booking agents are employed by Wide World, as are the

managers of the 20 branches throughout the UK. Wide World

publishes tour information on their website and in brochures

which are sent to places like libraries as well as to previous

customers and in response to requests. Bookings can be made

online or in the branches, or by post to the company‟s

headquarters.

There are existing systems to deal with scheduling of

drivers and coaches once a tour has been organised and

booking numbers are known, and to handle enquiries and

bookings for places on coach tours. There is a simple

database which stores tour information, for use within the

website, but it will need to be expanded. Tour leaders

currently plan their tours offline and input outline

information, enough to support website enquiries and

bookings, but there is increasing need for tour leaders to be

able to plan their tours interactively within the system, with

better access to up-to-date lists of venues and hotels where

discounts have been negotiated. Better information would

also help branch and customer service staff when answering

booking enquiries. Wide World has concluded that it is time

for a new system to work alongside the existing systems.”

Table 3.0 Data Dictionary of the case study is as represented below:

Use Case Name: Add Venue to Tour

Primary Actor: Tour Leader

Secondary Actors: Tours Manager

Other Stakeholders: TMS

Business Goal: To add a venue or hotel to an existing tour

Precondition Tour leader, Tour, and Venue all exist on the system

Success Condition Venue or hotel added to the tour

Main Path

 1. Tour Leader selects Add Venue to

Tour

2. System displays the Tour Selection

screen, showing tour name, start date and

duration, for each tour currently assigned to

the Tour Leader

 3. Tour Leader selects a tour from the

list

4. System displays Tour Details screen,

showing tour name, tour type, description,

start date, duration and venue names for the

selected tour

 5. Tour Leader selects Add Venue 6. System displays Search Criteria screen,

giving search fields of venue code, venue

name, location, type (hotel, restaurant,

museum, gallery) and required date range

 7. Tour Leader inputs search criteria

and selects Search

8. System displays list of venues that meet

the criteria, with availability in the required

date range

 9. Tour Leader selects venue code 10. System displays full details of

selected venue

 11. Tour Leader selects Confirm 12. System displays „Add another venue?‟

 13. Tour Leader selects No

Variant Paths

No suitable venue in

system

 8a. System displays error message „No

venues meet the criteria, please amend

search fields and try again‟

 8b. Return to 7.

Multiple venues 13a. Tour Leader selects „Yes‟ 13b. Go to 6.

IV. MODELS OF THE PROPOSED SYSTEM USING

UML SYSTEMS DEVELOPMENT TOOLS

A. Use Case Diagram

Understanding what is model in a Use Case diagram

requires the knowledge of what a Use case is. A use case is a

single role that can be carried out by a user of a system (an

actor). Collection of use cases represents the different aspects

of the system‟s operations that may be executed by the actor

[13].

A Use Case Diagram models how the use cases in a system

relates with one another to coherently accomplish the systems

or organization‟s set goals of satisfying the user‟s needs with

an optimum minimal effort. It depicts use cases that must

always be done in some instances stereotyped as (include)

and the one that is optionally executed with the stereotype

(extend) [20].

Use Case is used to representing the interaction between an

actor and the systems role to be performed in a pictorial form

that depicts the actor with a stick person usually skeletally

drawn to create an impression of human features and the role

Harmonization of Tools and Techniques for System Development

 109 www.wjir.org

drawn with an oval shape. The use case is labeled using a verb

phrase and the actor with a noun.

Use case is a useful technique in system analysis and design

for concise and adequate requirement gathering during the

early stages of business modelling process either to upgrade

an already automated system or to automate a manual system

[17].

Use case generates a valid acceptable architecture of a system

that will later be used to identify the needed entities that

forms classes and relationship between them as well as their

attributes and possible operations.

Most importantly use case forms the basis for system

operations documentation that provides a reference point for

smooth transaction.

 uc Wide World Tour Management System

Financial Officer

Branch Manager

Clerical Assistant

Team Manager

Tour Manager

Tour Leader

Approv e

payment in

excess of

£1,500
Record payment

Record balance

Record budget

payment

Check full

payment

Create new

inv oice

Add v enue to tour Update Tour cost

Add itineries

Create new tour

Approv e inv oice

Assign driv er

Edit tour

View tour

View report

Create budget

report

Create tour plan

report

Create up to date

spending report

Balance cost

«extend» «extend»

«include»

«extend»

«extend»

«extend»

«extend»

«extend»

Figure 3.1: The Use Case Diagram for Wide World Add Venue to Tour Case Study

B. The Proposed System’s UCD Design

Considerations

In drawing the wide world tour management system Use

Case diagram the actors identified are: Tour Manager, Tour

Leader, Financial Officer, Branch Manager, Team Manager

and clerical Officer.

A “Clerical Officer” generalizes the functionalities of both

team manager and branch manager and both managers have

their specialized attributes, hence the generalization flow

control arrow from both branch manager and team manager

to the clerical officer actor.

A branch manager also performs the role of a financial officer

in a branch therefore financial officer generalizes part of

branch managers role.

A Tour Manager performs all the role of a tour leader while

tour leaders are absent hence the generalization relationship

from tour manager to tour leader.

The lines between use cases and actors shows the different

roles associated with the respective actors.

As part of the decisions made while drawing the Use Case

diagram a clerical officer records payments, while he does

that he records balance if such exist which does not always

happens therefore is an extend operation, if in the process the

payment made is in increase of £1,500 then it first needs

https://doi.org/10.31871/WJIR.9.1.28 World Journal of Innovative Research (WJIR)

 ISSN: 2454-8236, Volume-9, Issue-1, July 2020 Pages 106-114

 110 www.wjir.org

approval from the financial officer before it is recoded

therefore record payment extends approve payment use case.

A clerical officer create new tour records driver may be added

during tour creation or edited later hence this operation

extends add driver use case, venues and itineraries could

letter be added to the tour by the clerical officer or the tour

leader and in the process tour cost may be updated

immediately or latter therefor the two operations extends

update cost use case. Tour is also edited by tour leader but not

created.

New invoices are created by clerical officer but approved by

tour leader and in the process sometimes update tour cost,

therefore an extend operation on update cost use case.

Before tour commences tour leader check record of full

payment this process will always include checking balance

record to ensure no balance is left.

Tour leader views record of tour and as well view report.

Report generalizes different other reports such as create

budget report, up to date spending report and tour plan report

all these are shown as individual use cases because they are

performed separately.

A financial officer balances cost for the whole wide world

tour whereas a branch manager balance cost for a branch as

shown in the use case diagram. This forms the summary of

decisions considered in drawing the wide world tour use case

diagram.

V. USE CASE REALIZATION FOR „ADD VENUE TO

TOUR‟ USE CASE

 A. Analysis Class Diagram

A class diagram is made up of entities call classes

and the association between them. An Analysis Class

Diagram is a Class Diagram that represent classes with their

attributes specified as public, usually prefixed with a plus

sign, with their respective data types such as string, integer

etc. However, at this stage the focus is on the entities that

exist in the system and not how they behave or respond to

dynamic nature of the system, therefor operations of the

classes are not included [15]. It also points out which entities

are related to one another and the possible multiplicities in

relationships (for instance 1..*, 0..*) but no details of the

order in which they interact.

Class Diagrams can be useful in system analysis and design in

representing complex concept that has properties and

behaviors (for instance clients, Staff, Information etc.) and

how they communicate with each other to form a coherent

system. Class Diagram in summary describes the static

structure of a system in system analysis and design [4].

 pkg Add Venue to Tour Class Diagram

TourLeader

+ address :String

+ contactNo :String

+ gender :String

+ name :String

Tour

+ duration :String

+ startDate :String

+ tourDescription :String

+ tourID :int

Venue

+ location :String

+ name :String

+ postcode :String

+ street :String

+ type :String

+ venueCode :int

VenueAv ailabilityDate

+ address :String

+ date :String

+ description :String

+ ID :int
TourType

+ description :String

+ typeID :int

AddVenueToTourBoundaryClass AddVenueToTourControlClass

1..*

1

1

0..*

0..* 11..*1

Figure. 3.2: Analysis Class Diagram of the Wide World ‘Add Venue To Tour’

A. Summary of the Decisions Made in Drawing the

‘Add Venue to Tour’ Analysis Class Diagram

First of all everything starts from the boundary class which

may represent some sort of interface that the user can interact

with, in this case the tour leader.

The class to look at next is the Control Class which

represent an imaginary system‟s operation class that connects

all of the other classes in the class diagram together and thus

disconnecting them from the Boundary class to produce a

loosely couple design that ensures flexibility and scalability

in operations performance. It does not have any properties or

operations.

Further, Tour Leader, Tour and Venues are stored in the

system, therefore the need for a Tour Leader, Tour and Venue

Classes. These classes have the listed attributes shown in the

„TourLeader‟, „Tour‟ and „Venue‟ classes as represented in

Harmonization of Tools and Techniques for System Development

 111 www.wjir.org

the class diagram with their corresponding data types.

Some of the attributes are of type string because the need to

hold a descriptive value composed of characters while others

are integers because they are expected to hold numeric

values.

The attributes are prefixed with a „+‟ implying they are

public at this stage because is an analysis class diagram and

no operations are provided too because they are normally not

known yet.

The Tour Leader class collaborate with a Tour class to

identify the tour assign to a Tour Leader which may be one or

more tours therefor and association line is drown between

them with the multiplicity of 1 and „1..*‟.

The tour has types (for instance Hotel, Restaurant,

Museum and Gallery) therefore Tour Types has attributes as

shown in the class diagram and as such it can be a class of its

own and it interacts with the Tour class to identify a tour type

assign to a tour leader.

It is possible for the Tour class to have zero, one or more

tour type replicated over several tours therefore the

multiplicity 1 and „0..*‟ on the association line between Tour

Type class and Tour class.

Venues are assign to tours based on specific days or dates

therefore they may not be available for another tour on a day

already assigned to another therefore the list of days a venue

is available needs to be kept hence the need for

„VenueAvailability‟ class as included in the above class

diagram with its attributes.

The Venue class collaborate with the „VenueAvailability‟

class to identify when a venue is available which may be zero,

one or more availabilities hence the multiplicity 1 and „0..*‟

on the association between Venue class and

VenueAvailability class.

VI. COMMUNICATION DIAGRAM

The communication diagram models the changes in state of

the logical operations govern by certain business rules outline

in a class diagram during conceptual design process in order

to actualize an initially set precondition. This is made

possible through the representation of the manner in which

object instances interact by sending messages to and fro one

another to complete the system operations [9].

Communication diagrams are useful in system analysis and

design as a tool for depicting system logic and semantics in

the way objects dynamically behave during run time or

program execution which could not be realized with class

diagrams. It is used to show details of interaction between

objects.

 sd Add Venue to Tour Communication Diagram

Tour Leader

Add Venue to Tour

Screen

Add Venue to Tour

Control

Tour

TourLeaderDetails

Venue

TourType

VenueAv ailability

1: select add venue to tour()
1.1: get tour selection()

1.2: get tour leader details()

1.3: get tour selections()

1.4: display tour selections()1.5: display tour selections()

2: select tour from list()
2.1: get tour details()

2.2: get tour details()

2.3: get venue options()2.4: get tour type()

2.5: display tour detail screen()
2.6: display tour detail screen()

3: select add venue()
3.1: get search criteria()

3.2: get venue details()3.3: get tour type()

3.4: display search criteria screen()3.5: display search criteria screen()

4: input search criteria()
4.1: get available venues()

4.2: get available venues()

4.3: display available venues()4.4: display available venues()

5: select a venue code()
5.1: get venue details()

5.2: display venue details()5.3: display venue details()

6: select confirm()

6.1: update tour record()
6.2: update tour record()

6.3: display add another venue?()6.4: display add another venue()

7: select no()

Figure 3.3: Communication Diagram for the Use Case ‘Add Venue to Tour’

A. The Communication Diagram Design

Considerations

First the process started by an actor who initiated the process,

Tour Leader, and the boundary provides the interface for

interaction with the user depicted as the „Add Venue to Tour

Screen‟ shown on the communication diagram. When the

tour leader‟s input get into the system it needs to be

coordinated which explains the existence of the „Add Venue

to Tour Control‟ in the diagram.

Tour, Venue, VenueAvailability, TourType and

TourLeaderDetails are entities stored in the system for access

therefore they all need to be included as shown in the

communication diagram.

The sequences of operations in the „Add Venue to Tour‟

communication diagram are described by numbered

messages passed across by objects from one entity to another

in a sequential order. Each operation starts with a unique

whole number value from the actor, Tour Leader, (for

example 1, 2, ….7) and continues by an incremental decimal

point at regular interval (for instance 1.1,1.2,..1.5) to the final

destination of that message sequentially as shown in the

communication diagram. The directional arrow preceding

each massage shows the flow control of the message from its

origin to its final destination.

The reasons why the different entities listed are needed are

already emphasized in the analysis class diagram which is

where the communication diagram represented here is

derived from. To make the diagram readable and

https://doi.org/10.31871/WJIR.9.1.28 World Journal of Innovative Research (WJIR)

 ISSN: 2454-8236, Volume-9, Issue-1, July 2020 Pages 106-114

 112 www.wjir.org

self-explanatory a unique consistent decimal numbering and

directional flow control is maintained all through the design

process of the communication diagram thus making the

diagram easy to interpret, the diagram speak for itself as a

means for justification.

VII. SEQUENCE DIAGRAM

Sequence diagram models the order and timing of messages

transmitted between a collections of objects. Operations in

sequence diagram may be grouped into a synchronous or

asynchronous pattern. The cycle of operations in a

synchronous group must be completed and a confirmation of

successful completion acknowledge at the next phase before

the subsequent operation starts. In an asynchronous cycle

another operation may start before acknowledgement of

completion of the earlier operation is received. This is

normally depicted in sequence diagram using „Life Lines‟

represented in solid bars with extended dotted lines showing

where an operation starts and where it ends [13].

Sequence diagram is useful in system analysis and design

for representing operations that require sequential order of

execution in a system in order to avoid unusual occurrences

and ensure proper management of system resources such as

memory [8]. For instance an operation may expect the

information from a previously completed operation as its

input to start up its processing, and if this process is not

properly sequenced it will give room for some irregularities.

Therefore sequence diagram clearly address such situation in

system analysis and design.

 sd Add Venue to Tour Sequence Diagram

Tour Leader

Add Venue to tour

Screen

Add Venue to Tour

Control
A

:TourLeaderDetails Tour Venue VenueType VenueAvailabilityDate

AddVenueSelected()

getTourLeaderDetails()
selectAddVenueToTour()

getTourSelection()
displayTourSelection()

displayTourSelection()

selectTourFromList()

tourSelected()

getTourDetails()

getVenue()

getVenueType()
displayTourDetailScreen()

TourDetailScreenDisplayed()

selectAddVenue()

addVenueSelected()

getTourType()

getVenue()

displaySearchCriteriaScreen()

searchCriteriaDisplayed()

SelectSearch()

getAvailableVenues()inputSearchCriteria()

CheckVenues()

displayAvailableVenues()

AvailableVenueDisplayed()
VenueCodeSelected()

selectVenueCode()

getVenueDetail()

displayVenueDetail()

venueDetailDisplayed()

selectConfirm()

confirmSelected() updateTour()

diplayAdAnotherVenue()

AddAnotherVenue?()

selectNo()
NoSelected()

Figure 3.4: Sequence Diagram for the Use Case ‘Add Venue to Tour’

Harmonization of Tools and Techniques for System Development

 113 www.wjir.org

A. The Sequence Diagram Design Decisions

In drawing the „Add Venue to Tour‟ Sequence Diagram the

following decision are considered necessary:

The actor that represents the Tour Leader is needed, a

boundary to provide intractable interface between the system

and the tour leader is required and a way of demarcating the

boundary from the other entities is eminent hence the

presence of the „Add venue to Tour Control‟.

The other entities added includes Tour, TourLeaderDetails,

Venue, VenueTypes and VenueAvailability.

These entities are necessary because if the Tour Leader

key-in his details from the „Addvenue to Tour Screen‟, the

control will firstly be directed to the TourLeaderDetail entity

for identification after which the list of tour associated with

the tour Leader will be queried from the „Tour‟ entity and

return to the control and back to the boundary for presentation

to the tour leader.

To get a search criteria the Venue, and VenuType, entities

has to be accessed and the generated result returned to the

tour leader to choose a search criteria.

Tour Leader may have to choose a venue therefore he has

to ensure the venue is not already occupied hence the

„VenueAvailability‟ entity has to be check for availability of

the venue chosen from the „Venue‟ entity.

Thereafter the available venue is chosen and the „Tour‟

entity is updated with the selected venue.

The process can be repeated if another venue is to be added

or it may be terminated otherwise.

VIII. SYSTEM DEVELOPMENT PROCESS

TECHNIQUES

A. Interview

Interviewing a focus group of the individuals, users, legal

advisers and designers of system to be implemented will

produce more viable and reliable responses, but getting

access to these right set of people to interview them may

proof hard due to their busy schedules, on the other hand the

users of this technologies are often constrained in one way or

the other therefore may not be comfortable to grand an

interview or participate in a focus group which obviously

spelt out a great disadvantage for the choice of interview as a

technique for the system development processes [1].

Interview technique adopts a more flexible repetitive tools

approach of extracting and grouping responses but it uses

open ended questions hence making interaction process

between the system analyst and the participant spontaneous

and free for detail opinions expression rather than a “Yes” or

“No” answers as in the case with questionnaires but this

makes the analysis phase of the findings tedious, complex,

and difficult (Bernard, 1995).

B. Survey Technique

Considering the demanding nature of the schedules of the

survey groups to be administered on the system that is to be

implemented, who are partly the direct users, legal advisers

and designers of the technology, survey questionnaire will be

a most suitable technique to use since it can be completed at a

convenient time and place and then later picked up by the

system analyst, this makes data collection process more

efficient [11].

C. Observation Technique

Observation technique is based on an interpretive research

concept, practically interpretive research employs two

separate roles namely the outside observer role and the

participating observer role [3]. Reports generated from an

interpretive outlook should not be perceived as devoid of

bias, this is due to system analyst‟s prejudice in the collection

and analysis of data [2]. During a focus group observation

research, system analysts find it impossible to resist the urge

to guide their participants understanding of the ongoing

process, a process described as “double Hermeneutic” [18].

Weighing the nature of this research and the above points

about the respective techniques, this research recommends

carrying out a survey (qualitative method) in its data

collection processes during system development processes.

IX. CONCLUSION

DFD and UML have a lot in common as pointed out by the

preceding discussion, they both have strength and

weaknesses, DFD works better at analysis phase such as

requirement gathering, whereas UML handles software

objects more naturally because it is designed for that purpose.

Therefore combining the two system development structured

modelling tools together; with a painstaking questionnaire

survey technique of system development process will

certainly leverage the full potentials of system process

modelling activities into a reliable and efficient software base

solution.

REFERENCES

[1] Adelopo, I. (2010). The impact of corporate governance on auditor

independence: A study of audit committees in UK listed companies.

PhD, De Montfort University, 45-60.

[2] Alain, P. (1993). Survey Research Methodology in Management

Information Systems: An Assessment. Center for Research on

Information Technology and Organizations: UC Irvine, 6-30.

[3] Berlo, A. (2005). Ethics in domotics. Gerontechnology. Research

Methods in Anthropology.2nded, 3(3), 165-170. London: Sage.

[4] Cook, S. and Daniels, J. (1994). Designing Object Systems:

Object-Oriented Modelling with Syntropy. UK:Prentice Hall

International Ltd.

[5] [5] Dennis, A., Wixom, B. and Roth, R., (2012). Systems Analysis &

Design. 5th ed. 111 River Street, Hoboken, NJ: John Wiley & Sons,

Inc.

[6] Desfray, P. and Raymond, G. (2014). Modelling Enterprise

Architecture with TOGIF: A Practical Guide Using UML and BPMN.

225 Wyman Street, Waltham, MA 02451, USA: Elsevier Inc.

[7] Eckert, C. (2005). Risk across design domains: research methodology,

problem analysis, evaluation. Melbourne, 15-18

[8] Hook, G. (2011). Business Process Modelling and Simulation. Winter

Simulation Conference, IEEE, 13-16.

[9] Iran, T. (2017). Fundamentals of Software Engineering. IPM

International Conference, 7th IPM, 24-28.

[10] Jilani, A. (2011). Comparative Study on DFD to UML Diagrams

Transformation. World of Computer Science and Information

Technology Journal (WCSIT), 2(5), 10-16.

[11] Kothari, C. (2009). Research methodology: Methods and techniques.

2nded. New Delhi: New age.

[12] Kuskela, M., and Haajanen, J. (2007). Business Process Modelling and

Execution: Tools and Technologies Report for SAOMes Project.

Julkaisija-Utgivare Publishers.

[13] Lampathaki, F., Koussouris S. and Psarras, J. E. (2013). Business

Process Reengineering. Decision Support System Laboratory, NTUA.

[14] Noran, S. O. (2000). Business Modelling: UML vs IDEF. Griffifth

University.

[15] Sommerville, I. (2011). Software Engineering, 9th ed. Pearson.

https://doi.org/10.31871/WJIR.9.1.28 World Journal of Innovative Research (WJIR)

 ISSN: 2454-8236, Volume-9, Issue-1, July 2020 Pages 106-114

 114 www.wjir.org

[16] Tiwari, K. (2012). Merging of Data Flow Diagram with Unified

Modelling Language. International Journal of Science and Research

Publications, 1 (2), 1-6.

[17] Ullmer, B. and Ishii, H. (2000). Emerging frameworks for Tangible

User Interfaces. IBM systems journal, 39(4), 36-41.

[18] Walsham, G. (1995). Interpretive case studies in IS research: Nature

and method. Eur. Journal of. Information Systems, 4(2), 74-81.

[19] Wazlawick, R. (2014). Object Analysis and Design for Information

Systems: Modelling with UML, OCL and IFML. 225 Wyman Street,

Waltham, MA, 02451, USA: Elsevier Inc.

[20] Yan, Z. (2007). Business Process Modelling: Classifications and

Perspectives. Leipzig, Germany.

