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Abstract— The method of equivalent Lagrangians yields 

transformation maps which can be used to find solutions and 

conserved quantities of a class of Kuramoto Sivashinsky 

equations. Furthermore, we utilize the Lie algebra admitted by 

the equation to obtain an optimal system of one dimensional 

subalgebras for the equation. All equivalent invariant solutions 

corresponding to these subalgebras are presented. 

 

Index Terms— Equivalent Lagrangian, Symmetries, and 

optimal system.  

 

I. INTRODUCTION 

It has been shown that the notion of equivalent Lagrangians 

are used to construct Lagrangians for differential equations 

with a known Lie algebra of point symmetries (Kara, 2004; 

Okeke & Laisin, 2017), where the differential equations are 

derivable from a variational principle (i.e., differential 

equations that have Lagrangians). The significant of this 

method is to find the solutions of a given differential equation 

that has an isomorphic algebra of both the Lie point and 

Noether point symmetries. This means that the algebra of 

Noether point symmetries admitted by the Lagrangian and its 

equivalent must be of the same dimension. The same applies 

to the algebra of lie point symmetries of the given differential 

equation and the resultant equation from the equivalent 

Lagrangian. The method involves the construction of a 

regular point transformation which maps the Lagrangian of a 

simpler differential equation with known solutions to the 

Lagrangian of the equation we seek to solve (Wilson & Kara, 

2012).  Once this transformation is found, one can map the 

solutions of the simpler equation to solutions of the given 

equation we want to solve, provided the earlier mentioned 

properties are satisfied by the equation. 

The application of the concept of equivalent Lagrangians to 

construct Lagrangians for differential equations with a known 

Lie algebra of point symmetries has recently been a subject of 

extensive study. For example, Kara and Mahomed (Kara & 

Mahomed, 1992) applied the method to two cases of the 

equation of the form 

                                         

              (1) 
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Kara (Kara, 2004, ) used the approach to derive equivalent 

Lagrangians for a unit second order wave equation and a 

system of second order ordinary diff erential equations. In this 

paper, we extend the application to a fourth order partial 

diff erential equation of the form 

 

 
 

where α,γ are constants and n > 0. This equation (2) is a 

modified nonlinear wave equation introduced by Yang and 

Chen (Yang et al., 2000). It is associated with many 

equations. For example, in [Peire et al., 1995) a nonlinear 

wave equation. 

 

 
 

where u(x,t) is the longitudinal displacement, α > 

0, are real numbers was presented. It is used to study 

some problems about vertical vibration of one dimensional 

elasticity pole and two dimensional anti-plane shear in the 

weak nonlinear analysis of micro-structure model in the 

elasticity and plasticity. Furthermore, the instability of its 

special solution and ordinary stain solution were studied 

(Peire & An, 1995). Chen and Yang (Chen, & Yang, 2000) 

and Zhang and Chen (Zhang & Chen, 2003) considered the 

generalized equation of equation (3) and proved the existence 

and uniqueness of the global generalized solution and the 

global classical solution of several initial boundary value 

problems by the contraction mapping principle. The sufficient 

conditions of the nonexistence of the solution were also 

given. Yan (Yan, 2000) studied the equation (2) with the 

viscous damping term, by using the direct reduction method 

and obtained four new explicit solutions in the case of n = 2. 

The work of Yan (Yan, 2000) was extended by Wu and Fan 

(Wu & Fan, 2007) via the same method and presented the 

solutions for the equation for n ≥ 3. However, none of these 

studies categorizes analytic, exact or invariant solutions that 

are related to the symmetries of the equation (2) In this paper, 

an attempt at an analysis of these aspects of the equation is 

carried out to investigate more new solutions of the equation. 

The aim of this paper therefore is first to construct equivalent 

Lagrangians of equation (2) from which the solutions of the 

equation can be found if the solutions of the equation 

associated with the equivalent Lagrangians are known or vice 

versa, and obtain exact invariant solutions of the equation. 

The outline of the paper is as follows. In the next section, we 

present some basic operators, definitions and concept of 

equivalent Lagrangians. In Section III, the equivalent 
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Lagrangians of the nonlinear wave equation (2) are 

constructed through point transformations of the symmetries. 

In Section IV, the optimal system of one dimensional 

subalgebras of the Lie symmetries of (2) is derived. 

Moreover, using the optimal system of subalgebras, 

symmetry reductions and equivalent group invariant 

solutions are obtained in section V. A brief discussion and 

conclusion is given in the last Section.    

II.  PRELIMINARIES 

 

Definition 2.1.  

A System  of s partial diff erential 

equations of independent variables  

and -dependent variables  is defined 

by; 

 

where  denote the collection of all first, 

second, ..., kth-order partial derivatives.  

Definition 2.2. 

The Euler-Lagrangian operator is defined by 

 

where  

 

 

is the total derivative operator with respect to  

Definition 2.3. 

 The Euler-Lagrangian equations, associated with (4) are the 

equations 

 

where L is referred to as a Lagrangian of (4). 

Definition 2.4.  

A Lie Backlund operator X is defined by 

 

where  are given as 

 

Definition 2.5. A Lie Backlund operator X of the form (8) is 

called a Noether symmetry generator associated with a 

Lagrangian L of (7) if there exists a vector  

 such that 

 

where X is prolonged to the degree of L (Olver, (1993).  If the 

vector B is identically zero, then X is astrict Noether 

symmetry (Ibragimov et al., 1998). For each Noether 

symmetry generator X associated with a given Lagrangian L 

corresponding to the Euler-Lagrange diff erential equations, a 

conserved quantity is obtained (Kara et al., 2009; Okeke, 

Narain & Govinder, 2018) using the equation 

 

Definition 2.6. Two Lagrangians,  

and , are said to be equivalent if 

 ,   (12) 
where  and  is the determinant 

of the Jacobian matrix (Kara et al., 2009).  

For ordinary diff erential equations in which , 

the definition of equivalence up to gauge function, 

 is given as 

Definition 2.7. Two Lagrangians, L and , are said to be 

equivalent up to gauge function, 

 if 

 

 

where 

 

 

III.   EQUIVALENT LAGRANGIAN FOR THE CLASS OF KS 

EQUATIONS 

  Firstly, we present the Lie and Noether point symmetries of 

(2) which shall be used in this section to form the equivalent 

Lagrangian of the equation and in subsequent sections for 

further analysis. The Lie point symmetry generators of (2)   is 

a five-dimensional Lie algebra spanned with the following 

basis 

  

where . Obviously, when , the dilations in 

space and time are lost. This seems outstanding and 

distinguishes the symmetry structure of (2) for  from 

any other values of . The Noether point symmetries of the 

Lagrangian 

                               

 

of equation (2), are the generators  above, all 

having zero gauge functions except  which has a gauge 
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function .We want to construct a 

Lagrangian equivalent to (15) 

using the transformation  

 

. Since any 

one parameter group G of a transformation can be reduced 

under a suitable change of variables to the translation group 

with the operator  (Ibragimov, 1994), suitably 

equivalent quantities can be constructed using symmetry 

structures. Therefore, a point transformation that leaves the 

Lagrangians of (2) invariant under change of variables can be 

obtained through point transformations of its symmetry 

structures. Hence, by mapping a Noether symmetry generator 

                                              

 

to the dilation operator in  variables 

 
from the Lie point symmetries (14), we obtain the point 

transformation  

As an 

example, we let 

 
Thus, it follows that  

 and the Jacobian of the transformation . By 

Definition 2.6, a Lagrangian equivalent to (15) is of the form 

  

The Euler Lagrangian equation associated with equation (19) 

is 

  

To verify that this Lagrangian (19) is indeed equivalent to 

(15) under the point transformation (18), we calculate its 

Noether point symmetries in the new variables  

given as 

  

  

  

  

Clearly, this Noether algebra (21) is isomorphic to the 

Noether algebra of the Lagrangian L of (15)  Hence, L and 

are equivalent under the point transformation (18). Thus, 

using the equivalent Lagrangian approach, we derive new 

wave equation (20) from (2) which has some physical 

interpretations in physics but appears complex. However, its 

solutions can be obtained using the transformation (18) once 

the solutions of the wave equation (2) are known. Many 

Lagrangians equivalent to (15) can also be constructed 

through mappings of other symmetry generators using similar 

approach. 

IV.   OPTIMAL SYSTEM OF SUBALGEBRAS 

The Lie group theory method plays an important role in 

finding exact solutions and symmetry reductions of 

differential equations. As any linear combination of 

symmetry generators is also a symmetry generator, there exist 

infinitely many different symmetry subgroups for a 

differential equation. Therefore, a method determining which 

subgroups would give basically different types of solutions is 

necessary and significant for a complete understanding of the 

invariant solutions. 

In this section we discuss in brief the optimal system method 

proposed by Olver (Olver, 1993) to obtain one dimensional 

subalgebras of the symmetry group admitted by equation (2) 

which shall be used in the next section for reduction and 

construction of invariant solutions for the equation. In 

constructing one dimensional optimal system of symmetry 

group 

   we consider the general operator 

                                                            

(22) 

where  are arbitrary constants. We apply adjoint maps to 

X in such a way as to simplify and/or eliminate as many of the 

coefficients  as possible to obtain a new simpler 

operator. To compute the adjoint representation, we use the 

Lie series:  

                                

      

(23) 

where  take the values from 1 to 5. Taking into account 

Table 1 for commutators, we obtain the adjoint Table 2. In 

what follows, after some calculations, it turns out that the 

optimal system of one dimensional subalgebras of (2) is 

  

where are arbitrary constants. Now using the discrete 

symmetry   of (2), we can delete the 

operators and from the set. Hence, finally, 

the optimal system of one dimensional subalgebras is 

                                           

   

 

Table 1: The commutation relations satisfied by generators 

(14) 

[,]      

 0 0  0  0 
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Table 2: Table of adjoint representation for (14) 
Ad      

     
 

      

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 
  
 

 

 

 
 

 
      

 

Table 3: Subalgebras, group invariant solutions and 
equivalent group invariant solutions 
Subalgebra Group Invariant Solution Equivalent Group 
Invariant Solution 

                                                    
                                

    
                    

 
                  

, 

                                                                        

                                                       

                                

 

V.  SYMMETRY REDUCTION AND EQUIVALENT INVARIANT 

SOLUTION  

 

One of the main objectives for calculating symmetries of 

differential equations is to use them to reduce the differential 

equations which could be solved to obtain exact solutions. 

The optimal system of one dimensional subalgebras (24) 

obtained in Section 4 is used to reduce (2) to ordinary 

differential equations and find their exact solutions where 

possible. The group invariant solutions corresponding to the 

subalgebras are determined and presented in Table 3. The 

equivalent group invariant solutions obtained using the 

transformation (18) are also presented. 

V(a) Invariance under : 

The substitution of the group invariant solution of  into (2) 

gives rise to an ordinary differential equation whose general 

solution is the linear function in t, 

                                        (25)      

where  are constants. 

V(b) Invariance under  : 

Similarly, in this case the group invariant solution 

corresponding to the symmetry generator 

leads to the linear solution in t and x variable, 

               

where  are constants. 

V(c) Invariance under : 

The group invariant solution of the subalgebra  

reduces (2) to 

                                                           

(27) 

Solving (27), we obtain the solution of (2) in terms of 

Hypergeometric function given as 

  

                      

             

(28) 

where c is a constant. 

V(d) Invariance under : 

The group invariant solution arising from the subalgebra 

results to the following nonlinear ordinary 

differential equation 

                                              

(29) 

Integrating (29) once and letting   yields a second 

order equation 

                                                    

(30) 

known as the first   transcendent. Its solutions  

 are meromorphic in the entire complex plane, but 

are essentially new functions that cannot be expressed in any 

standard form (Olver, 1993).  The corresponding solutions of 

the nonlinear equation (2) take the form 

 
where . 

V(e) Invariance under : 

The substitution of the group invariant solution of the 

symmetry  into (2) yields the following nonlinear ordinary 

differential equation 

  

 

 

VI. CONCLUSION 

One of the main objectives for calculating symmetries of 

differential equations is to use them to reduce the differential 

equations which could be solved to obtain exact solutions. 

The optimal system of one dimensional subalgebras (24) 

obtained in Section 4 is used to reduce (2) to ordinary 

differential equations and find their exact solutions where 

possible. The group invariant solutions corresponding to the 

subalgebras are determined and presented in Table 3. The 

equivalent group invariant solutions obtained using the 

transformation (18) are also presented. 
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