Groundwater Study in Irrua, Esan Central Local Government Area of Edo State, Using Electrical Resistivity Method

Okoedion P, Esekhaigbe F.I, Abode H.O

Abstract— The Schlumberger electrode configuration was used to carry out Vertical Electrical Sounding (VES) at Irrua, Esan central, Edo State . A total of four (4) Vertical Electrical Soundings were carried out in the study area. The electrode spread was up to 450metres in almost all sites. The main equipment used for the electrical resistivity was the ABEM A.C. terrameter and its accessories. The data was interpreted qualitatively using the partial curve matching technique and quantitatively by computer iterative modelling. The results obtained from the VES stations showed five geoelectric layers made up of dry top soil, sand-clay, clayey-sand and sandstones which were interpreted using hand dug wells data as a control to detect various lithological boundaries and aquifer existence in the area. The thickness of near surface aquifer was found to be between 142m and ∞ while the depth to the deep fresh water aquifer was found to be between 27.5m and 267.5m. Some of the VES sites have good prospect for groundwater potential for shallow hand dug wells.

Index Terms— Surface aquifer, vertical electrical sounding(VES), ABEM A.C Terrameter, Schlumberger electrode Configuration, Geoelectric layers.

I. INTRODUCTION

Highlight Groundwater is water held within the interconnected openings of saturated rock beneath the earth's surface. Groundwater bearing formations which are sufficiently permeable to yield usable quantity of water are called aquifers. Thus, an aquifer is a rock unit that will yield water in usable quantities to wells or springs or other point of recovery. And the top of the saturated zone in such an aquifer is called the water table, (Garg, 2007). Water is one of the most consumed minerals at homes, in the industries and factories. One major source of obtaining portable water today is through boreholes and drilled wells. Ever since man began to live in communities, the problems of suitable and adequate water supply especially for domestic and farm use has always agitated the mind. Indeed, the Egyptian civilization could not have flourished without an adequate and reliable water supply, the River Nile.

In most parts of Irrua, Esan Central Local Government Area, Edo State, not all wells yield appreciable quantity of portable water since they are prone to variation groundwater characteristics. The existence of failed boreholes and dry wells has posed a great concern. This is however, traceable to sitting and drilling of boreholes without geophysical studies. Therefore, it is essential that a reliable geophysical study should be carried out in the study area. There are many methods of geophysical surveys. Some of these methods make use of naturally occurring field within the earth while others require the introduction of artificially generated current (field) into the ground.

The method of geophysical survey employed in this research work is the electrical resistivity method. It involves the passing of electric current into the ground by means of two electrodes called current electrodes and measuring of potential drop through a second pair of electrodes called potential electrodes. The principle of operation depends on the fact that any subsurface variation in conductivity alters the form of current flow within the earth, and this in turn affects the distribution of electric potential. Thus, it is possible to have information about the subsurface formations from potential measurements made at the surface, (Osemeikhian and Asokhia, 1994).

The resistivity properties of the sub-surface can be explored by two main procedures often called Vertical Electrical Sounding (VES) and Horizontal Electrical Sounding (HES).

II. RESEARCH METHODOLOGY

The geophysical technique employed in this research was the electrical resistivity method using vertical electrical sounding (VES) conducted in Schlumberger configuration.

Four electrode arrays was used at the surface, one pair introducing current to the earth, the other pair for measurement of potential drop associated with the current (Telford,1976). A schematic diagram of the Schlumberger configuration is shown in figure 1

The field procedure in the Schlumberger electrode array system is to expand the current electrode successively while

Okoedion P, Department Of Science Laboratory Technology, Auchi Polytechnic, Auchi

Esekhaigbe F.I, Department Of Science Laboratory Technology, Auchi Polytechnic, Auchi

Abode H.O, His Department Of Science Laboratory Technology, Auchi Polytechnic, Auchi

the potential electrodes remained fixed. This process yields a rapidly decreasing potential difference across the measuring capabilities of the instrument. At this point, a new value for potential electrode separation was selected, typically 2 to 4 time lager than the preceding value and the survey continued. In this arrangement, it is required that the distance between potential electrode (CD) must never exceed two-fifth of the distance between the current electrodes (AB), i.e. $CD \leq \frac{AB}{5}$.

RESULT	quantitative into
The results of the vertical electrical soundings obtained	
from the field are shown in table 1.1, 1.2, 1.3 and 1.4	
respectively. The geometric factor for the Schlumberger	
Table 1 1. Eal	1 D. C. VECI

electrode array is calculated from the formula:

 $\frac{1}{4}$

$$K = (\pi CD)((L/CD)^2 - Where L = \frac{AB}{2}.$$

And the apparent resistivity is given by

 $\rho_a = K \frac{\Delta V}{l}$ The value of apparent resistivity were plotted (as ordinates) against current electrode spacing $\frac{AB}{2}$ (as abscissa) using double logarithmic graph for necessary qualitative and quantitative interpretations

	Table 1.1: Field Data for VES I					
	CURRENT	POTENTIAL	RESISTANCE	ELECTRODE	APPA	
S/N	ELECTRODE	ELECTRODE	ΔV	GEOMETRIC	RENT	
	SPACING	SPACING	$R ={I}(\Omega)$	FACTOR	RESISTI	
	AB	CD	Ι	K(m)	VITY	
	$\frac{1}{2}$ or $L(m)$	$\frac{1}{2} = l(m)$			o (On	
	Ζ	2			P_a (32)	
1	2.00	0.80	61.08	6.597	403.0	
2	3.00	0.80	23.45	16.415	385.0	
3	4.00	0.80	12.30	30.159	371.0	
4	6.00	2.00	16.30	25.134	410.0	
5	8.00	2.00	9.57	47.120	451.0	
6	12.00	2.00	5.05	109.956	556.0	
7	15.00	6.00	12.15	49.480	601.0	
8	25.00	6.00	5.32	154.200	820.0	
9	32.00	6.00	4.00	258.658	1015.0	
10	40.00	10.00	5.14	235.619	1211.0	
11	60.00	10.00	2.58	549.779	1416.0	
12	100.00	20.00	2.63	753.982	1984.0	
13	150.00	20.00	1.20	1,735.730	2087.0	
14	200.00	20.00	0.91	3,110.177	2817.0	
15	250.00	20.00	0.66	4,877.323	3216.0	
16	300.00	20.00	0.56	7,037.168	3958.0	
17	350.00	20.00	0.41	9,589.712	3961.0	

Schlumberger survey (VES) Project: Groundwater study Sounding location: Agua -Irrua

Computation formula:
$$\rho_a = K \frac{V}{I}, \quad K = \frac{\pi}{2l} \left(L^2 - l^2 \right)_{\text{Or}} \quad K = \pi CD \left(\left(\frac{L}{CD} \right)^2 - 0.25 \right)$$

Table	1.2:	Field	Data For	VES	2
-------	------	-------	----------	-----	---

S/N	$\frac{\text{CURRENT}}{\text{ELECTRODE}}$ $\frac{AB}{2} = L(m)$	POTENTIAL ELECTRODE SPACING $\frac{CD}{2} = l (m)$	ELECTRODE GEOMETRIC FACTOR, K (M)	RESISTANCE Ω	APPARENT RESISTIVITY ρ_a (Ωm)
1	2.00	0.80	6.597	18.04	119.00
2	3.00	0.80	16.415	8.00	131.00
3	4.00	0.80	30.159	4.74	143.00

World Journal of Innovative Research (WJIR) ISSN: 2454-8236, Volume-6, Issue-5, May 2019 Pages 67-74

4	6.00	2.00	25.134	6.45	162.00
5	8.00	2.00	47.120	3.70	174.00
6	12.00	2.00	109.956	1.65	181.00
7	15.00	6.00	49.480	3.86	191.00
8	25.00	6.00	154.200	0.80	122.00
9	32.00	6.00	258.658	0.40	93.00
10	40.00	10.00	235.619	0.32	74.00
11	60.00	10.00	549.779	0.10	52.00
12	100.00	20.00	753.982	0.07	53.00
13	150.00	20.00	1735.730	0.05	84.00
14	200.00	20.00	3110.177	0.03	103.00
15	250.00	20.00	4,877.325	0.03	132.00

Project: Groundwater study

Sounding location: Shaka Momodu Rd, Akho Irrua

Computation formula:
$$\rho_a = K \frac{V}{I}$$
, $K = \prod CD \left(\left(\frac{L}{CD} \right)^2 - 0.25 \right)$

Table	1.3	field	Data	for	VES 3
-------	-----	-------	------	-----	-------

S/N	CURRENT ELECTRODE SPACING $\frac{AB}{2} = L(m)$	POTENTIAL ELECTRODE SPACING $\frac{CD}{2} = l(m)$	$\begin{pmatrix} \text{RESISTANCE} \\ (\Omega) \end{pmatrix}$	ELECTRODE GEOMETRIC FACTOR, K	APPARENT RESISTIVITY ρ_a (Ωm)
1	2.00	0.80	28.50	6.597	188
2	3.00	0.80	15.23	16.415	250
3	4.00	0.80	10.64	30.159	321
4	6.00	2.00	17.35	25.134	436
5	8.00	2.00	11.71	47.120	552
6	12.00	2.00	6.10	109.956	671
7	15.00	6.00	15.58	49.480	771
8	25.00	6.00	5.50	154.200	846
9	32.00	6.00	3.09	258.658	798
10	40.00	10.00	3.24	235.619	763
11	60.00	10.00	1.60	549.779	875
12	100.00	20.00	1.56	753.982	1178
13	200.00	20.00	0.53	3110.177	1636
14	300.00	20.00	0.28	7037.168	1959
15	350.00	20.00	0.20	9589.712	1816

Schlumberger survey (VES) Project: Groundwater study Sounding location: Idumuagbokhae Street, Equarre-Irrua Date; 23rd July 2010

Computation formula:
$$\rho_a = K \frac{V}{I}$$
, $K = \Pi CD \left(\left(\frac{L}{CD} \right)^2 - 0.25 \right)$

	Table 1.4: field Data for VES 4							
1) S/N	CURRENT ELECTRODE SPACING $\frac{AB}{2} = L(m)$	POTENTIAL ELECTRODE SPACING $\frac{CD}{2} = l(m)$	RESISTANCE (Ω)	ELECTRODE GEOMETRIC FACTOR,K	PPARENT RESISTIVITY ρ_a (Ωm)			
1	2.00	0.40	115.58	15.08	1743			
2	3.00	0.40	50.90	34.72	1767			

Groundwater Study in Irrua, Esan Central Local Government Area of Edo State, Using Electrical Resistivity Method

3	4.00	0.40	27.34	62.20	1703
4	6.00	1.00	32.52	54.98	1788
5	8.00	1.00	15.14	98.96	1498
6	12.00	1.00	5.54	224.62	1245
7	15.00	2.00	7.20	173.57	1250
8	25.00	2.00	2.51	487.73	1225
9	32.00	2.00	1.69	801.11	1352
10	40.00	5.00	2.89	49480	1428
11	50.00	5.00	1.89	777.54	1469
12	60.00	5.00	1.48	1123.12	1663
13	100.00	10.00	0.76	1555.09	1178
14	150.00	10.00	0.25	3518.58	897
15	200.00	10.00	0.1 3	6267.48	817
16	250.00	10.00	0.09	9,801.77	864
17	300.00	15.00	0.10	9401.22	905
18	350.00	15.00	0.08	12,804.61	1013
19	400.00	15.00	0.07	16,731.60	1139
20	450.00	15.00	0.06	21,182.19	1315

Schlumberger survey (VES) Project: Groundwater study Sounding location: Akhigbe Housing Estate, Akho-Irrua

Computational formula: $\rho_A = K \frac{\Delta V}{I}, \quad K = \pi CD \left(\left(\frac{L}{CD} \right)^2 - 0.25 \right)$

III. DISCUSSION OF RESULTS

Four vertical electrical soundings (VES) were carried out to cover the entire study area. These are along Agua road, Irrua (VES1); Along Momodu Street, Equare- Irrua (VES2); Udumuagbokhae Street, Equare-Irrua(VES3) and Akhigbe Housing Estate (VES4). The tables below show the various geoelectric layer parameters and analysis of the area. VES 1 (Along Agua road, Irrua)

Geoelectric Layers	Resistivity	Thickness (m)	Cumulative	Soil Lithology
	(Ohm-m)		Thickness (m)	
1	439.7	1.577	1.577	Top soil
2	156.9	0.7864	2.363	Sandy clay
3	631	10.12	12.48	Sand
4	2596	86.09	98.57	Dry sand
5	8013	Infinity	Infinity	Dry sand

RMS Error =1.09%

Ves1 is an HA (bowl ascending) type curve. The computer aided interpretation produced a best match that resulted in five geolectric layers corresponding to five geologic layers. The first layer has a resistivity value of 439.7 Ω m with a thickness of 1.577m representing a thin resistive top soil. The second layer has a resistivity of 156.9 Ω m with a thickness of 0.7864m representing sandy clay. The third layer has a resistivity of 631.1 Ω m with a thickness of 10.12m representing sand. The fourth layer has a resistivity of 2596 Ω m and a thickness of 86.09m representing dry sand. The fifth layer has a resistivity of 8013 Ω m with an infinite thickness representing dry sand. The total depth of current penetration is 98.57m. No aquifer is present in this station

Fig 1.0: Geoelectric Interpretation Curve Section for VES1s

VES 2 (Shaka Momod	lu Street,Equare-Irrua.)			
Geoelectric Layers	Resistivity	Thickness (m)	Cumulative Thickness	Geologic Layers
	(Ohm-m)		(m)	
1	113.3	2.265	2.265	Top soil
2	281.4	6.196	8.461	Sand
3	59.02	19.27	27.73	Sandy clay
4	18.19	27.43	55.16	Sandy clay
5	28998	Infinity	Infinity	Dry sand
RMS Erro	pr = 1.37%			

A total of five geologic layers were interpreted from the HK(Bell-Bowl) type curve. Sounding at this site revealed that the first layer has a resistivity of 113.3 Ω m and a thickness of 2.265m representing the top soil. The second layer has a resistivity of 281.4 Ω m and thickness of 6.196m representing sand sequence. The third and fourth layer have resistivities of 59.02 Ω m and 18.19 Ω m and thickness 19.27m and 27.43m respectively. The fifth layer has a resistivity of 28998 Ω m with an infinite thickness representing dry sand.

The third and fourth layers are made of Sandy Clay/Clayey Sand horizons which is a signatory of a perched aquifer. The spread did not strike the aquifer which implies that it is very deep. The maximum depth reached is about 55.16m.

Fig 2.0: Geoelectric Interpretation Curve Section for VES2

	VED 5 (Runnungbokklue Street, Eguare Intur)					
Geoelectric	Resistivity	Thickness (m)	Cumulative			
Layers	(Ohm-m)		Thickness (m)	Lithology		
1	133.4	1.444	1.444	Top soil		
2	225.4	5.432	6.876	Sandy Clay		
3	299.4	13.25	20.13	Sandy clay		
4	2920	247.4	267.5	Dry sand		
5	115	Infinity	Infinity	Water bearing		
				sand		

VES 3 (Idumuaghokhae	Street	Fouare-Irrua)
	Iuumuagooknac	Succi,	Eguart-mua

RMS Error = 0.982%

The sounding produced a total of five geoelectric layers which was interpreted from the field data typified by an H.A (Bow-Ascending) type curve. The first geoelectric layer has a resistivity of 133.4 Ω m and a thickness of 1.444m representing top soil. The second layer has a resistivity of 225.4 Ω m and a thickness of 5.432m representing sandy clay. The third layer has a resistivity of 229.4 Ω m and a thickness of 13.25m representing sandy clay. The fourth layer has a resistivity of 2920 Ω m and a thickness of 247.4m representing dry sand. The fifth layer has resistivity of 115 Ω m with an infinite thickness. This layer is composed of water bearing sand which signifies a high yielding aquifer. The water table is deep seated. The depth to the top of the aquifer is 267.5m. The aquifer is expected to be prolific. The maximum depth reached in this location is 267.5m.

Fig 3.0: Geoelectric Interpretation Curve Section for VES3

VFS 4 (Akhighe	Housing	Estate	Akho-Irrua)	۱
VLO4(AKIIIgue	riousing	Estate,	AKIIO-III ua)	J

	· ==• · (- ===		,,	
Geoeletric	Resistivity	Thickness (m)	Cumulative	
Layers	(Ohm-m)		Thickness (m)	Lithology
1	1781	5.34	5.34	Resistive top
				soil
2	729	9.39	14.73	Sandy clay
3	5215	12.8	27.53	Dry sand
4	442	142.2	169.7	Water bearing
				sand
5	140000	Infinity	Infinity	Highly resistive
				dry sand

RMS Error =1.60%

The sounding produced a total of five geoelectric layers which was interpreted using the curve matching of HKH (Bell-Bowl-Bell) type curve. It revealed a high resistive top soil in the first layer with resistivity of 1781Ω m and a thickness of 5.34m. The second layer has resistivity of 729Ω m and a thickness of 9.39m representing sandy clay. The third layer has a resistivity of 5215Ω m and a thickness of 12.8m representing dry sand. Below this layer is the fourth layer low resistivity of 442 Ω m and thickness 142m. This layer is composed of water bearing sand. This implies that there is presence of aquifer in this

layer. The depth to the top of the high yielding aquifer is 27.53m while the depth to the bottom of the aquifer is 169.7m. The aquifer is confined and prolific. The fifth layer has a high resistivity of 140000Ω m with an infinite thickness. This layer is composed of highly resistive dry sand.

The maximum depth of current penetration is 169.7m

Fig 4.0: Geoelectric Interpretation Curve Section for VES4

VES	5	Maximu	Curve	No	of	Thicknes	Total	Existing
no/Loc	cation	m AB/2 (m)	Shape	Layers		s of near	Depth	borehole
						surface	Penetrated	data (m)
						aquifer (m)	(m)	
1	Along	350	HA	5		Not	98.57	140
Agua	road,					penetrate		
Irrua								
2	Shaka	300	HK	5		Not	55.16	73
Momo	du street,					penetrate		
Eguare	e-Irrua							
3		350	HA	5		Infinite	267.5	80
Idumu	agbokhae							
Street,								
Eguare	e-Irrua							
4	Akhigbe	450	НКН	5		142.2	169.7	95
Housing Estate,								
Akho-	Irrua.							

Summary of VES results along sedimentary environs

IV. CONCLUSION

The study revealed the presence of near surface fresh water aquifer at Irrua which is the main source of fresh water for the inhabitant. At Agua-Irrua, the depth to the aquifer was not penetrated which means that the water table is very deep. At Eguare-Irrua, Momodu Street, although the aquifer was penetrated at the depth between 27.73m to 55.16m, it was a perched aquifer which implies that it may not stand the test of time. Also, at Equare-Irrua Idumuagbokhae Street, the aquifer was penetrated at the depth of 267.5m which means that the aquifer was deep-seated. At Akho quarter, the aquifer was penetrated at the depth between 27.53m to 169.7m.

In general, Irrua has a good prospect for pure water industry. Aquifer in the study area is located at the depth that is not less than 27.53m to 169.7m below the surface which may not dry up for a long time after borehole completion. Detection of aquifers aids the general economy by setting up ventures for the production of sachet and bottled water arising from hand dug borehole at Irrua. This study demonstrated the usefulness of VES using Schlumberger array for the delineation of aquifer types in the study area.

V. RECOMMENDATION:

It is recommended that future researchers in this study area and its environs should use a combined VLF and VES so as to obtain the actual depth of the aquifer. It is also recommended that a similar study should be carried out during the dry season to know the variation in the depth and thickness of the aquifers. SP logging should be carried out to confirm the lithology of the area

REFERENCES

- Asokhia, M.B; Azi, S.O. and Ujuanbi, O. (2000). A simplified computer iteration techniquefor the interpretation of vertical electrical sounding. *Journal of the Nigerian Association of Mathematical Physics. Vol.*4:269-280.
- [2] Azi,S.O; Isiwele, D.O. and Ozegin, K.O. (2007). Groundwater potential investigation using combined VLF and VES in Akoko North L.G.A, Ondo State. *Journal of the Nigerian Association of Mathematical Physics*. Vol 2: 403-410.
- [3] Egbai, J.C. and Asokhia, M.B. (1998). Correlation between resistivity survey and well logging in Delta State. *Journal of the Nigerian Association of Mathematical Physics*. Vol. 2: 163-175.
- [4] Egwebe, O. and Dauda, F. (2007). Geophysical Investigation for Groundwater in Orifite, Anambra State, Nigeria. *Journal of the Nigerian Association of Mathematical Physics*. Vol. 2: 379-386.
- [5] Eduvie, M.O. (1987). The economics of drilling in the basement of complex area- A comparative cost analysis mud and a method of bore-hole construction. *National water Bulletin*, Vol.4 (2&3).
- [6] Ewaileifoh,D.(1997). Electrical resistivity to determine groundwater level in Esan land. Unpublished M.Sc thesis, Physics department, A.A.U, Ekpoma.
- [7] Garg, S.K. (2007). Physical and engineering geology. (5th revised edition). Lagos: Khanna publishers
- [8] Ikhifa, I; Ozegin, K.O. and Osemeikhian, J.E.A.(2008).Geoelectric inverstigation into groundwater potential of aquifers: A case study of Ekpoma and Environs. *Journal of Engineering Science and Applications*. Vol.5: 89-94.
- [9] Ikhifa, I.; Ozegin, K.O. and Erimafa,J.T.(2008). Geophysical investigation for groundwater and clay deposits in Igarra, Edo State, Nigeria. *Journal of Engineering Science and Applications*. Vol.5:122-125.
- [10] Kashef, A.I. (1987). Groundwater engineering. McGraw-Hill Book Company, New York. Lashkaripour,G.R; Sadeghi,H. and Qushaeei,M.(2005). Vertical electrical soundings for groundwater assessment in southeastern Iran. *Journal of Aplied Science*. Vol.5(6):973-977.
- [11] Loke, M.H. (2000). Electrical imaging survey for environmental and engineering studies. *www geometric.com*
- [12] Mooney,H.M. and Wetzel,W.W. (1956). Potential about a point electrode and apparent resistivity curves for two-three-and- four- layer earth. Minneapolis University. Minnesola Press.
- [13] Olayinka, A.I. (1990). Geophysical techniques in groundwater exploration in the crystalline basement. UNESCO, Maiduguri, Nigeria Windsor Grant Publishers, Abuja/Lagos. Pp.383-403.
- [14] Osemeikhian, J.E.A and Asokhia, M.B. (1994). Applied geophysics. Lagos. Santos Service Ltd.
- [15] Omosuyi,G.O.; Ojo,J.S. and Enikanselu, P.A. (2003). Geophysical investigation for groundwater around Obala-Obakekere in Akure area within basement complex of southwestern Nigerian. *Journal of Mineral Geology*. Vol. 39 (2). 109-116.
- [16] Park, S. and Kim, J. (2005). Geological survey by electrical resistivity prospecting in landslide area. *Geosystem Engineering*. 8(2). 35-42.
- [17] Philip, K; Michael, B. and Lan, H. (2002). Introduction to geophysical exploration. (5th revised edition). U.S.A. Blackwell Publishers.
- [18] Singh, K.P. (2003). Geoelectrical exploration for groundwater in a hard rock region of Hyderabad India. *Technical Article* 21:1-8.
- [19] Sultan, S.a; Hatem, M.M; Santus, F.A.M. and Abd Alla,M. (2009). Geophysical measurements for subsurface mapping and groundwater exploration at the centre part of the Sinai peninsula, Egypt. *The Arabian Journal of Science and Engineering*. Vol.34. number 1A.
- [20] Telford, W.M; Geldart, L.P; Sheriff,R.E. and Keys, D.A. (1976). Applied Geophysics. London. Cambridge University Press.
- [21] Ujuanbi, O. and Asokhia, M.B. (2000). Search of groundwater bearing formation within the shallow aquifer in basement environment. *AESTAB Journal*. Vol.1:7-10.
- [22] Ujuanbi, O. and Asokhia, M.B.(2001). The vertical electrical sounding: A viable tool for the investigation of clay deposit. *Journal of the Nigerian Association of Mathematical Physics*. Vol.5: 79-88.
- [23] William, L. (2004). Fundamental of Geophysics. London. Cambridge University Press.

